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Abstract. Electric Vehicle (EV) industry has ushered in rapid develop-
ment recently, and many corporations such as Xingxing, State Grid, have
built substantial charging stations (CSs) to supply charging services and
gain charging revenues. In this paper, we focus on maximizing the sum
of the revenues of all CSs managed by one corporation, assuming other
corporations’ pricing strategies are fixed. We model the EV charging and
CS pricing problems as a hierarchical stackelberg game with the corpo-
ration at the upper layer as the leader and EV flows at the lower layer
as followers. We first analyze the charging strategy equilibrium for EV
flows, which however lacks closed-form expressions and thus the back-
ward induction cannot be applied to solve the pricing optimization for
the corporation. Therefore, we analyze the hierarchical game as a math-
ematical program with equilibrium constraints (MPEC). Additionally, a
smooth algorithm is applied to solve the MPEC. Simulation results show
that the smooth algorithm can achieve high revenues for the corporation.

Keywords: EV flows - Hierarchical game + Pricing optimization -
Equilibrium

1 Introduction

In recent years, with the development of fast charging technology, the electric
vehicle (EV) industry has ushered in rapid development [1]. As environmentally
friendly transportation, EVs have drawn increasing attention from the public and
markets [2,3]. Therefore, some corporations such as Xingxing, State Grid, have
built substantial charging stations (CSs) to supply charging service in the EV
charging market, where corporations compete with each other to gain charging
revenues.

As the charging service supplier, corporations are looking for ways to make
their business more profitable. There exists competition among different corpo-
rations in the charging market, and each corporation wishes to motivate more
EVs to charge at CSs managed by it so as to boost revenues. Compared with
changing the location of CSs [4], pricing is easier to implement without addi-
tional costs. The corporation thus usually adjusts the charging prices for CSs
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overtime to attract more EVs, and a good pricing strategy can make the corpora-
tion more profitable. Additionally, as rational individuals, EVs prefer to choose
the most suitable CS to minimize charging costs. They take into consideration
the charging prices of CSs, distance to CSs, and queuing costs at different CSs
while making their charging decisions. Furthermore, as the queuing cost depends
on the number of EVs at the same CS, EVs can affect each other’s decisions,
and there exists a game among different EVs.

Some studies about EV charging and CS pricing have been conducted to
maximize the revenues of the CSs [5-9]. However, these works only focus on
the revenue of a single CS rather than the revenue of the corporation, and the
amount of electric vehicles in these works is small, which is not consistent with
the practical applications. In this paper, we consider the pricing optimization for
all CSs managed by one corporation to maximize the total revenue of the cor-
poration, assuming other corporations’ pricing strategies are fixed. To optimize
the pricing strategies for CSs, the corporation should consider the competitors’
decisions and anticipate the EVs’ charging behavior which may lack closed-form
expressions due to the game among EVs. This makes it more challenging to
analyze pricing strategies. Additionally, taking into account the great number
of EVs in real urban environments further increases the challenge of solving the
problem.

To tackle above challenges, we model the EV charging and CS pricing prob-
lems as a hierarchical stackelberg game [10]. Specifically, the corporation is the
leader in the game, whose goal is to maximize its CSs’ total revenues by setting
the optimal price for each CS, and its pricing optimization is the upper layer
problem. The EVs in the game aim at minimizing the total charging costs. As
the pricing optimization is the main issue in the game, we analyze EVs’ deci-
sions with a coarser granularity to handle the large number of EVs to solve the
hierarchical game effectively. Thus we divide the city into multiple regions, each
of which contains a certain number of EVs. We treat the EV flows of regions
as followers instead of individual EVs, the EV-flow is a certain number of EVs,
whose charging costs optimization is the lower layer problem. As such, the game
among EVs becomes the game among EV flows in different regions.

For this hierarchical game, the lower layer problem corresponds to a clas-
sical non-cooperative game [11] that is parameterized by the pricing strategies
at the upper layer. As the lower equilibrium lacks closed-form expressions, and
the upper problem is constrained by it, the upper problem cannot be solved
through the classical backward induction method. We instead solve the hierar-
chical game as a mathematical program with equilibrium constraints (MPEC)
[12], through which the hierarchical game can be transformed as a single-level
optimization problem. Additionally, we analyze the existence of the equilibrium
solution of the hierarchical game, and a smooth algorithm is applied to solve
the MPEC. Finally, we compare the smooth algorithm with Block Coordinate
Descent (BCD) method [6] and the fixed pricing method which includes the low-
est pricing strategy and the highest pricing strategy. The simulation results show
that the smooth algorithm can achieve higher revenues for the corporation.
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The main contributions of this paper can be summarized as follows. 1) We
model the EV charging and CS pricing problems as a hierarchical stackelberg
game with the corporation as the leader and the EV flows as followers. 2) We
jointly consider the charging costs optimization for EV flows and the pricing
optimization for CSs managed by the considered corporation. 3) We analyze
the existence of the equilibrium solution of the hierarchical game and formulate
the hierarchical game as a MPEC. 4) We apply a smooth algorithm to solve
the MPEC, and the simulation results verify the correctness of our theoretical
analysis.

2 Related Work

Some previous works have been conducted to explore the EV charging and CS
pricing problems. Most existing works mainly focus on two aspects. 1) Maximiz-
ing the revenues of the CSs [5-9]. 2) Minimizing the social costs [13-16].

Maximizing the Revenues of the CSs. Jan et al. [5] proposed a dynamic
pricing method based on Markov Decision Process (MDP) to maximize the
charging service provider’s revenues. Cheng et al. [7] proposed a dynamic pric-
ing incentive mechanism to encourage small merchants to install and share their
charging equipment with others to adapt to the increasing charging market
needs. Wei et al. [8] modeled the CS pricing problem as a multi-leader multi-
follower stackelberg game to analyze the price competition among CSs, but the
scenario in this paper is only one-dimensional. Woongsup et al. [9] also analyzed
the pricing competition among heterogeneous CSs.

Minimizing the Social Costs. Yanhai et al. [13] proposed an algorithm to
adjust the prices to incentivize EV flows in different areas to charge at different
CSs to minimize the total social costs. Qiang et al. [14] also considered fac-
tors such as pricing and distance to model the overall charging problem as an
optimization of social welfare. Gagangeet et al. [15] studied the issue of electric
energy trading between EVs and CSs in the dynamic pricing charging mar-
ket, and compared the two cases: modeling EVs as leaders and modeling CSs
as leaders. Zeinab et al. [16] proposed a coordinated dynamic pricing model to
reduce the overlap between the residential peak power consumption time and the
charging station peak power consumption time during the evening peak power
consumption period.

However, these works only consider the revenues of a single CS, without
considering the corporation’s revenues. As one corporation usually manages a
certain number of CSs, and the pricing optimization for the multiple CSs is more
challenging than for the single CS. Thus the optimization of the corporation’s
revenues is more intractable but more meaningful. Additionally, these works
consider the strategies of individual EVs, but the number of EVs handled is
very small, which is not consistent with the actual urban environment.



420 B. Wu et al.

3 System Model and Game Formulation

3.1 System Model

In this subsection, we introduce the CS pricing and EV charging model. Formally,
the city can be abstracted as n regions with N;, Vi € {1,2,...,n}, EVs in region
i to be charged, and there are m CSs managed by [ corporations. The charging
capacity of CS j is N¥, Vj € {1,2,...,m} , denoting the number of EVs that can
be charged by CS j at the same time. Moreover, corporation s, Vs € {1,2,...1},
manages H; CSs, whose charging prices are set by the corporation s, and the
revenues of these CSs also belong to this corporation.

In our proposed model, we focus on maximizing the sum of revenues of all CSs
managed by one corporation with the charging prices of other corporations’ CSs
fixed. The corporation can adjust the charging price for each CS dynamically
to maximize its revenues by predicting the charging strategies of EV flows in
different regions. Subsequently, the EV flows in region ¢ (Vi € {1,2,...,n}) can
determine the optimal number of EVs to CS j (V5 € {1,2,...,m}) based on the
price p; of CS j, the distance d;; to CS j, and the queuing cost g; at CS j. The
goal of EV flows in each region is to ensure that all the charging demands are
served and the charging costs are minimized. We then introduce the definition
of EV flows’ charging costs and the corporation’s utility.

Upper Layer (Leader)

Corporationl Other Corporations
P1 b2 p3 .P j P j+1 .pm

Fig. 1. System model.

EV Flows’ Charging Costs. As the EV flows in each region wish to minimize
the total charging costs, we first define the cost function of EV flows. Specifically,
EV flows make decisions on the number of EVs to each CS according to the
estimated charging costs, and the charging costs of EV-flow from region i to CS
j is defined as follow

Cij = (w1pj + w2q; + wsdyj) fij, (1)
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where p; denotes the charging price of CS j, ¢; denotes the queuing cost of EV-
flow at CS j, and d;; denotes the distance from region ¢ to CS j. Additionally,
w1, wa, and ws are weights assigned to the three types of costs respectively, and
fij denotes the EV-flow from region i to CS j, 0 < f;; < N;. Specifically, the
queuing cost depends on the capacity of the CS and the number of EVs that
come to the CS, we give a linear assumption about the queuing cost based on
[13], which is defined as
_fi Yty

= = —, (2)
Nj Nj
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where f; denotes the total EV flows coming to CS j from all the regions, which
can be further denoted by >-" , f;;. Without loss of generalization, all the EV
flows in each region choose different CSs rationally, and we define the cost func-
tion of EV flows in region ¢ as

Ci=Y Cy. (3)

Corporation’s Utility. The goal of the corporation is to maximize its charging
revenue, which comes from the CSs managed by it. For a single CS j, the utility
is defined as

Vi =(pi — &) fs, (4)
where €; denotes the average operating cost at CS j. As CSs are managed by
different corporations, we assume that the corporation s manages H, charging
stations, H, should be less than m, and the corporation expects to maximize its
revenues. Formally, the utility of corporation s is defined as follow

Hs Hs
Vo=V, = (0 —£)f5 (5)
j=1 j=1

3.2 Game Formulation

In this subsection, we investigate the interaction between the corporation and
EV flows from a distributed perspective. Specifically, we adopt the stackelberg
game which features the hierarchical game structure where the corporation is
the leader at the upper layer and the EV flows are followers at the lower layer.
We jointly consider the charging costs optimization for EV flows, and the pricing
optimization for CSs managed by the corporation. Additionally, we also present
the analysis regarding the structure of the game equilibrium.

In a distributed perspective, the EV flows and the corporation in the model
determine their optimal strategies based on their interest. The corporation can
determine pricing strategies for CSs managed by it, and the EV flows can deter-
mine their charging strategies by choosing different CSs. In the proposed game,
the corporation is the leader and takes action first in the competition. The cor-
poration can adjust CSs’ charging prices first by anticipating the responses of
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EV flows’ charging behaviors. Upon receipt of all CSs’ pricing strategy p, EV
flows in each region can react to the leader’s action and determine their charg-
ing strategies. Following the discussions above, we can specify the optimization
problem for each participant in the game.

Corporation’s Optimization Problem. At the upper layer, the corporation
should anticipate the response strategies of the EV flows and consider the pricing
strategies of the CSs managed by other corporations to set prices. According
to the utility function (5), the optimization problem for corporation s, Vs €
{1,2,...,1}, can be correspondingly given as

= (6)
st g <pj <pirr,

where the charging price p; of CS j, Vj € {1,2,..., Hs}, should be larger than
the operating cost ¢; due to the individual rationality of the corporation. Addi-
tionally, each CS’s charging price cannot increase indefinitely due to government
management, which means that there is a price ceiling p7"**.
EV Flows’ Optimization Problem. At the lower layer, EV flows in region
i, Vi € {1,2,...,n}, aim at minimizing their total charging costs. As the pricing
mechanism provides a simple but effective way to control the EV flows’ behavior,
EV flows in region i, Vi € {1,2,...,n}, can decide on the optimal EV-flow f;; to
each CS j based on the CSs’ pricing strategy p. According to the cost function
(3), the optimization problem for EV flows in region ¢, can be given as

min Cz = ZC”
- (™)
s.t. 2j=1 iy = Wi
fij > O,VJ S {172a "'am}7

where the constraint in (7) means that all the charging demand in each region
should be served.

Lower Equilibrium Condition. As the goal of EV flows is to minimize total
charging costs, their decisions are affected by each other due to the queuing cost
in the CS. Therefore, the solution to the lower problem (7) can be characterized
by the equilibrium. In an equilibrium state, no EV flows can decrease their
charging costs by unilaterally changing their charging strategy. Specifically, this
concept can be denoted as

C(fF) <C(fi), Vie{l,2,...,n}, (8)
where f denotes the optimal charging strategy of EV flows in region 1, i.e.,

fi* :[ i1 Ji2s e i*m]T'
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Reformulation of Corporation’s Optimization. We have formulated the
two-layer hierarchical game, which is constituted by the problem (6) at the
leader and (7) at each follower. We have also specified the lower equilibrium
condition. We then consider the upper problem, which handles one single opti-
mization problem as we assume that there is only one corporation adjusting its
CSs’ pricing strategies while other corporations’ strategies are fixed. Since the
corporation needs to consider the response of the EV flows in different regions,
the corporation’s optimization can be reformulated as follow

H.
max  Vi=> (pj —&)f;
j=1

€5 <Pj < p}”ax’ (9)
' fl = argminCi(fi), VZ S {1a27 "'?n}’
S.t. m
s.t. 2= fug = Ni

fz_] > O,VJ € {1,2,...,77’7/},

where the lower layer equilibrium condition in (8) is a constraint of the upper
optimization problem in (6).

4 Game Analysis and Solving as MPEC

4.1 Game Analysis

In this subsection, we first analyze the lower layer game for EV flows and the
equilibrium of the hierarchical game. Then we analyze the optimality conditions
at each follower and apply the Karush-Kuhn-Tucker (KKT) condition [17] to
present them. Subsequently, we reformulate the hierarchical game as a MPEC.
For the lower game, we have the following proposition.

Proposition 1 (Equilibrium of Lower Game). There always ezists a unique
equilibrium in the lower game, and the optimization problem of each follower can
converge to a unique solution in the equilibrium state, regardless of the pricing
strategy p at the upper layer.

Proof. The objective function of problem (7) is continuous, and the inequality
and equality constraints are convex. Therefore, the feasible sets of (7) are closed,
nonempty, and convex. The Hessian matrix of the utility function C; is positive
definite, which means that V2C; = 0. Therefore, the utility function C; is strictly
convex, therefore, the lower layer game always exists a unique equilibrium, and
the optimization problem of each follower can converge to a unique solution in the
equilibrium state, regardless of the pricing strategy p at the upper layer [11]. O

We have proved that the lower game always admits a unique equilibrium,
which ensures that the optimization problem of each follower can converge to
a unique solution in the equilibrium state when the leader’s pricing strategy is
given. For the equilibrium of the hierarchical game and the solution of the upper
layer problem, we have the following proposition.
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Proposition 2 (Equilibrium of Hierarchical Game). There always exists
an equilibrium in the hierarchical game, and the hierarchical game can always
converge to a solution which can be denoted as [p*, f*], where p* is the solution
of the upper problem, and f* is the equilibrium solution of the lower game among
EV flows.

Proof. The feasible sets of the problem (9) are continuous, bounded, and con-
vex. The objective function of the corporation is subject to p and the lower
equilibrium f*, which is well-defined. For each CS, when the charging price is
high, the EVs will become conservative in choosing that CS. Instead, when the
charging price is low, the revenues may also be low due to the low charging price.
Thus the optimal charging price p* always exists. Additionally, since the lower
game always admits a unique equilibrium, we can infer that there always exists
an equilibrium in the hierarchical game, and the hierarchical game can always
converge to a solution. O

We have analyzed the characteristics of the hierarchical game. Due to the
complicated game among the followers and the lack of closed-form equilibrium
expressions in the lower game, the corporation’s optimization problem cannot be
solved through the classical backward induction method. Thus we solve the hier-
archical game as a MPEC. As the best-response at each follower corresponds to
a concave problem, we can apply the KKT condition [17] to equivalently present
the optimality conditions f, = argmin C;(f,) at each follower. Therefore, the
problem (9) can be reformulated as

max V= Z —e)f

E] < pj < pmax’
Vy Li=0, Vi (10)
fiti =Y 16{1,2,...,7’1}7
s.t. S fii =N Vie{l,2,..n},

V’Ljfij = 0, Vi € {172, ,n},Vj S {1,2, ...,m},
v >0, Yie{l,2,..n}¥je 1,2, .. m}

where L; is the Lagrange function at the follower-i, given as
Li(fq;7’/i7>\i) = V?,f +)\ Zfzy (11)

where v; = [v;1, Vi, ...ﬂ/im}T and \; are the corresponding Lagrange multipli-
ers. As the constraints v;; f;; = 0 are complementary constraints which are very
complicated and hard to handle, it is intractable to solve the MPEC directly.
Additionally, if we enumerate each combination situation corresponding to the
complementary constraints, although the problem in each situation is convex,
there will be 2™*™ problems to be solved, which is extremely inefficient. There-
fore, we perturb the original MPEC following [18] and obtain a sequence of
smooth problems, the solutions of which converge to a solution of the original
MPEC. The details of the smooth algorithm are presented in the next subsection.
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4.2 Solution for MPEC

In this subsection, we perturb the original MPEC and consider a sequence of
smooth and regular problems as stated above. Specifically, we consider the per-
turbed problem P(u) with parameter p as follow:

Hs
max Vo= (pj —¢;)fs
j=1

€5 <pj < pj*Y,

Vi Li=0, Vie{l,2..,n}, 12)
S fii=Ni Vie{1,2,..,n},

vi; >0, Vie{l,2,..,n}, ¥je{l,2,..,m},

fij—2; =0, Vie{l,2,..,n}, Vje{l,2,..,m},

V (zij = vig)? + 42 — (25 + vij) = 0,

s.t.

where z € R™*" is an auxiliary variable. We can observe that the complementary
constraints in (10) are replaced by the last two constraints in P(u). Specifically,
when g = 0, the last constraint in P(u) may reduce to two cases: (1) v;; = 0

and \/;-Qj— zij = 0, (2) fi; = 0 and /(—v;;)? — v;; = 0. Since these two
cases correspond to the complementary constraints in (10), P(u) is equal to
the original MPEC. When p > 0, P(u) is a well-defined smooth problem, and
it can be solved by standard optimization tools. When p — 0, the solution of
the MPEC will converge to a stationary point by [18]. The smooth algorithm is
shown in Algorithm 1.

Algorithm 1. Smooth Algorithm for MPEC

Set k=Fk+1
end while;

1: Let {®} be any sequence of nonzero numbers with limy_.o p* = 0;
2: choose w® = (p?, 2,00, 2° A0) € RHF=T3m*n+n and set k = 1;

3: while |le]| > ¢ do

4: Find a stationary point w”® of P(u*);

5: e=uwk— wkil;

6:

7

As shown in Algorithm 1, we can solve a sequence of problems P(u) to
obtain a solution of the original MPEC. As the pricing of CSs, the decisions of
EV flows, the Lagrange multipliers, and the auxiliary variable are all variables
in P(u), we choose an initial value of these variables w® = (p°, £°, 19,20, A%)
and solve P(u) by standard optimization tools. Then we calculate the Euclidean
distance between two iterations which is denoted by ||e||. When ||e]| is lower than
a threshold e, the algorithm stops. Specifically, as p is also a parameter of P(u),
and for limj_..o u* = 0, the parameter u should be initially set to a number
which is close to 0 (e.g., 0.0001) and reduced at each iteration.
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Table 1. The experimental parameters

Parameters | Description Value Parameters | Description Value

w1, wa, wsg |Different weights [0.6, 0.1, 0.3 |u Algorithm parameter 0-10—%

NJL Charging capacity | 4-32 piles € Stopping parameter |1074

pj Charging price 0.8-1.8 RMB |n Region number 11, 13

dij Distance to CS 1-15km £; Operating cost 0.2-0.4 RMB

5 Simulation Results

In this section, we design a simulation to validate the effectiveness of the model
and the smooth algorithm. All computations are performed on a 64-bit machine
with 16 GB RAM and a six-core Intel i7-8770 3.20 GHz processor. And the
optimization problems are solved with python 3.8, scipy 1.5.2 and pyomo 5.7.3.

To better imitate the real environment, we collect the EVs and CSs data in
Nanjing (NJ) and Wuhan (WH)!. We then generated some summary statistics
based on real data in the two cities. We divide Nanjing into 11 regions and divide
Wuhan into 13 regions according to the official administration information, and
all CSs in one region are abstracted as one CS for simplicity. The number of
EVs in Nanjing is about 130000, we suppose 5% of the 130000 EVs (6500 EVs)
that charge in the charging game as [13] in Nanjing, and 4000 EVs (5% of
the 80000 EVs) charge in the charging game in Wuhan. We assume that the
EVs’ distribution follows the residential population distribution, and the result
of the two cities is shown in Fig. 2 and Fig. 3. The distance from each region to
each CS is obtained according to the Google traffic map. Additionally, according
to the data on Telaidian (www.teld.cn), the charging capacity at different CSs
fluctuates from 4 to 32, and the pricing of each kilowatt-hour of electricity at
different CSs fluctuates from 0.8 to 1.8 RMB. Thus the average charging fee of
each EV when fully charged can be estimated within the range of 40 to 90 RMB,
and we assume the operating cost is a quarter of the charging price. Additionally,
the weights in (1) are set as wy = 0.6, wy = 0.1, w3 = 0.3 as [13]. The parameter
1 is initially set to 0.0001 and reduced by a factor of 100 at each iteration, and
the stopping parameter ¢ is set to 107% as [18]. The experimental parameters
are listed in Table 1.

We compare the smooth algorithm with Block Coordinate Descent (BCD)
method [6] and the fixed pricing method which includes the lowest pricing strat-
egy (PFix-min) and the highest pricing strategy (PFix-max). All the evaluations
are performed based on the data generated from the real data in Nanjing and
Wuhan as stated above. We first compare the running time of the smooth algo-
rithm with the BCD algorithm based on the data in Nanjing and Wuhan. The
results are shown in Fig. 4 and Fig. 5, from which we can observe that the smooth
algorithm is faster than BCD algorithm obviously, and as the scale of the prob-
lem increases, the distinction becomes more obvious.

! http://www.cheyanjiu.com/info.php?Cateld=19.
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We then investigate the corporation’s revenue based on the data in Nanjing.
We first investigate the corporation’s revenue calculated by the smooth algorithm
under different number of total regions. As shown in Fig.6, as the number of
competitive CSs increases, the corporation’s revenue becomes lower, because
more CSs participate in the competition. We then investigate the corporation’s
revenue under the different numbers of competitive CSs. The result is given in
Fig. 7, from which we can observe that when there are more regions considered,
the CSs will be more heavily loaded, and the corporation has a higher chance
to improve the total revenue. We then compare the smooth algorithm with the
algorithms mentioned above. As shown in Fig. 8 and Fig. 9, the smooth algorithm
can achieve higher revenue for the corporation in the cases where there are
different number of competitive CSs and regions.

We then investigate the corporation’s revenue based on the data in Wuhan.
We also investigate the corporation’s revenue under different cases. As shown in
Fig. 10, as the number of competitive CSs increases, the corporation’s revenue
becomes lower. Figure 11 shows that when there are more regions considered, the
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corporation’s revenue will be higher. The results are the same as the results in
Nanjing. We then compare the smooth algorithm with other algorithms, Fig. 12
shows that the smooth algorithm can achieve higher revenue than other algo-
rithms when the number of competitive CSs changes, and Fig. 13 shows that the
smooth algorithm can achieve higher revenue for the corporation when the num-
ber of regions changes. All results above show the effectiveness of the smooth
algorithm in our model.

6 Conclusion and Future Work

In this paper, we propose a hierarchical stackelberg game to investigate the EV
charging market where CSs are managed by different corporations. Specifially,
we study the pricing optimization problem for one corporation assuming other
corporations’ pricing strategies are fixed. In the proposed game, the corporation
is the leader, whose goal is to maximize its total revenue by setting the most
suitable price for each CS managed by it. To handle a large number of EVs in
the urban environment, we treat the EV flows as followers instead of individual
EVs. The EV flows can decide charging behavior to minimize their total charging
costs. Due to the lack of closed-form expressions of the lower equilibrium, we
analyze the hierarchical game as a MPEC and apply the smooth algorithm to
find the solution for the MPEC. Simulation results have shown that the smooth
algorithm can achieve high revenues for the corporation.

As the future work, we will investigate the equilibrium among different cor-
porations, assuming all corporations can adjust the pricing strategies. This can
be modeled as an equilibrium problem with equilibrium constraints (EPEC).
Diagonalization methods have been widely used by researchers in engineering
fields to solve EPECs [19], which inspires us to solve the equilibrium among
different corporations.
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