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Abstract

This paper considers the mechanism design prob-
lem in two-sided markets where multiple strategic
buyers come with budgets to procure as much val-
ue of items as possible from the strategic sellers.
Each seller holds an item with public value and is
allowed to bid its private cost. Buyers could claim
their budgets, not necessarily the true ones. The
goal is to seek budget-feasible mechanisms that en-
sure sellers are rewarded enough payment and buy-
ers’ budgets are not exceeded. Our main contribu-
tion is a random mechanism that guarantees vari-
ous desired theoretical guarantees like the budget
feasibility, the truthfulness on the sellers’ side and
the buyers’ side simultaneously, and constant ap-
proximation to the optimal total procured value of
buyers.

1 Introduction
For one-sided markets, either with a single-seller and multi-
ple buyers or with a single-buyer and multiple sellers, much
research effort in the past decades has been invested to design
auction mechanisms to regulate the trading ([Vickrey, 1961;
Clarke, 1971; Groves, 1973]). While for two-sided market-
s with both buyers and sellers being strategic, most of the
works fall into the research line of double auction mechanis-
m design ([Myerson and Satterthwaite, 1983; McAfee, 1992]
), which assumes that the sellers can bid their costs and the
buyers can bid their values for the items and the mechanism
needs to determine the trading/payment rules that guarantee
some desirable properties, such as truthfulness of the bidding
behavior. In such scenarios, buyers’ behavior and sellers’ be-
havior are somehow symmetric, one with item value and one
with item cost. Accordingly, the seminal work in [McAfee,
1992] provides algorithms to match buyers to sellers by natu-
ral ordering of their values until a breakeven index; [Dütting
et al., 2014] further consider the situation that there are re-
strictions on which buyers and sellers can trade with one an-
other. [Colini-Baldeschi et al., 2016] and [Segal-Halevi et al.,
2016] extend their work by designing mechanisms satisfying
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strong budget balance, i.e., the amount of money paid by the
buyers is totally and exclusively transferred to the sellers.

These works, however, did not provide truthful mecha-
nisms for a natural procurement scenario in two-sided mar-
kets where multiple strategic buyers come into the market
with their private budgets and want to procure as much val-
ue of items as possible from the sellers with private costs. A
mechanism in such scenario needs to guarantee that the total
payment paid by each buyer does not exceed its own bud-
get. In such scenario, the behaviours of buyers and sellers are
asymmetric, and the main challenge in designing such mech-
anisms differs much from the traditional double auctions that
does not consider payment budgets. A natural question then
arises in such scenarios.

Can we design an efficient mechanism in two-sided market-
s that stimulates the desired economic interactions among
buyers and sellers without any buyer’s payment exceeding
its budget?
In the procurement mechanism design problem above,

multiple buyers compete with each other for procuring more
value of items with diverse procurement budgets/abilities and
the sellers compete with each other to sell their items with
more payment rewarded. The designed mechanism should
determine an allocation and a payment scheme to guarantee
various desired theoretical properties like, individual ratio-
nality that the payment to each seller covers at least (but not
necessarily equals) its private cost, budget feasibility that the
total payment of each buyer does not exceed its budget, seller-
s’ truthfulness that no sellers have incentive to bid a false cost,
buyers’ truthfulness that no buyers have incentive to claim
a false budget, and approximation that the total value pro-
cured by buyers is close to the optimal solution that would be
achievable had the mechanism known the bidders’ true pri-
vate information.

Note that the problem above falls into the field of budget-
feasible procurement mechanism design, in which the first
budget-feasible truthful mechanism in single-buyer procure-
ment auctions is developed in [Singer, 2010]. As shown in
their work, the design challenge differs much from the tra-
ditional mechanisms since the budget constraints apply not
to the costs but to the payments the mechanism uses to sup-
port truthfulness; Furthermore, the traditional VCG mecha-
nism also fails due to the fact that computing the required
optimal allocation is NP-hard, and even if computed, it may
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result in infinite/unbounded total payment. They successful-
ly designed a novel mechanism that achieves the truthfulness
(only sellers’), budget feasibility and constant approximation
on maximizing the total procured value of the single-buyer.
Related work. After the seminal work of [Singer, 2010],
many research efforts have been invested to design budget-
feasible mechanisms. [Chen et al., 2011] further devel-
oped improved mechanisms with better approximation ratio.
[Dobzinski et al., 2011] and [Bei et al., 2012] further consider
general value functions where the buyer has a subadditive val-
ue function over procured items. While many works focus on
the offline problem, [Badanidiyuru et al., 2012] and [Singer
and Mittal, 2011] investigate the online procurement problem
where agents arrive in sequential order and a budget feasible
mechanism must make an irrevocable decision whether or not
to procure the service as the agents arrive.

Note that the works above consider the one-sided auctions
where there are multiple sellers with public values but pri-
vate costs, and did not address the truthfulness of the single-
buyer. A series of works then investigate a reversed sce-
nario with multiple budgeted buyers but a single seller with
public cost, where buyers can bid their budgets and values
over the item of the single-seller. However, for such budget-
ed agent setting, the traditional measure, the sum of buyer-
s’ procured values, is known to be very poorly approximat-
able under budget constraints, even when budgets are known
to the auctioneer. To overcome this impossibility, [Dobzin-
ski and Leme, 2014] propose a new assumption/measure by
capping the procured value of a buyer by its budget (which
is the minimum between its procured value and its budget),
which admits incentive compatible mechanisms with loga-
rithmic approximation to the sum of buyers’ procured val-
ues, and even improved mechanisms with constant approx-
imation ([Lu and Xiao, 2015]). Our work also consider-
s budget-feasible auctions with multiple buyers, but in con-
trast, we address two-sided auctions with multiple sellers, and
meanwhile the values of items are public while the budgets
from buyers and costs from sellers are private. We want to
design truthful mechanisms that could achieve constant ap-
proximation without resorting to the assumption of capped
procured value of buyers. Our mechanism requires the buy-
ers to submit their full amount of claimed budgets as de-
posit to verify the overbidding case, following the design
of mechanisms with verification ([Penna and Ventre, 2014;
Ferraioli et al., 2016]). Since no prior works have addressed
the truthfulness on both sides simultaneously, our work takes
a step forward towards designing mechanisms with truthful-
ness on both sides in two-sided auctions with budgets.

[Hirai and Sato, 2017] also study two-sided markets with
buyers’ budget constraints, but they only address buyers’
truthfulness while sellers are assumed to be truthful, and
meanwhile it considers divisible items. This paper conduct-
s the first work on the budget-feasible mechanism design in
two-sided auctions considering the truthfulness of the sellers
and buyers simultaneously.
Our Results. In this work, we address the budget-feasible
procurement problem in two-sided markets. We investigate
the model where items have heterogeneous values. Our main
contribution is a randomized mechanism that guarantees de-

sired theoretical properties like the budget feasibility, indi-
vidual rationality, truthfulness both on the sellers’ side and
the buyers’ side, and constant approximation to the optimal
total procured value of buyers.

2 Preliminaries
2.1 Two-sided Market Model
We consider a two-sided procurement market with a set of
n sellers S = {s1, s2, ..., sn} and a set of m buyers A =
{a1, a2, ..., am}. Each buyer ai has a budget Bi ∈ R+, which
is privately known by the buyer itself. Each seller sj has an
item with value vj ∈ R+ and cost cj ∈ R+ to sell. While
the item’s cost cj is privately known by the seller itself, we
assume that the item’s value vj is common knowledge, fol-
lowing the assumption in the traditional reverse-auctions ([K-
lemperer, 1999; Singer, 2010]). Let B = {B1, B2, ..., Bm}
denote the budgets of the buyers, C = {c1, c2, ..., cn} be the
costs of the sellers and V = {v1, v2, ..., vn} be the values of
the items.

This paper addresses procurement mechanisms to model
buyer-centric scenarios, e.g. crowdsoucing, microtask crowd-
sourcing ([Anari et al., 2014; Gao et al., 2015]). In such
applications, the announced tasks usually cannot be finished
by a single seller/worker and buyers can afford the costs of
single-sellers. We assume that all buyers have a basic pro-
curement ability Bi ≥ Bmin for all ai (where Bmin is a
known minimum threshold of budget) and no items exceed
any buyer’s procurement ability, i.e., cj ≤ Bmin for all sj .

We focus on the strategic setting, in which the participants
(buyers and sellers) may act strategically to maximize its own
utility. Each seller bids a cost bj of its item that may be differ-
ent from the real cost cj in order to maximize its own utility
(or benefit). Let b = {b1, b2, ..., bn} denote all the bids of
the sellers. Each buyer ai claims a budget B̂i that may be
different from its true budget Bi.

2.2 The Mechanism
Formally, a mechanism M = (f, P ) consists of an allocation
function f specifying which buyer buys which seller’s item
and a payment function P specifying how much is paid. The
allocation function f maps a set of bids to a set of winning
sellers Sw ⊆ S. We use xij = {0, 1} to indicate whether the
item of seller sj is allocated/sold to buyer ai and use pij to
denote the payment paid by buyer ai to seller sj .

The utility of seller sj is pijxij−cj , the difference between
the payment it receives and its true cost if sj is allocated (sj ∈
Sw), and 0 otherwise. The utility of buyer ai is

∑
j∈Sw

vjxij ,
the total value it procures from the market.

In this work, we design truthful budget-feasible procure-
ment mechanisms in two-sided markets. The designed mech-
anism should guarantee the following properties,
Individual rationality. The utility of each winning seller sj
is non-negative, i.e.,

∑
1≤i≤m pijxij−cj ≥ 0 for all sj ∈ Sw.

Sellers’ truthfulness. Each seller sj would truthfully bid its
cost, i.e., its utility is maximized when it bids bj = cj .
Buyers’ truthfulness. Each buyer would truthfully bid its
budget, i.e., its utility is maximized when it bids B̂i = Bi.
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Following the design of mechanisms with verification, we re-
quire buyers to submit their full amount of claimed budgets as
deposit at the beginning of the auction to verify the overbid-
ding case. Since overbidding can be detected and forbidden
1, we concentrate on showing buyers would not underbid.
Budget feasibility. The designed mechanism should meet
the budget feasibility for all buyers. That is, the total pay-
ment of each buyer ai does not exceed its budget, i.e.,∑

1≤j≤n pijxij ≤ Bi.
Approximation. The auctioneer wants to maximize the to-
tal value of buyers procured from the market, V (S,B) =∑

1≤i≤n
∑

1≤j≤m vjxij . To measure the performance of
the mechanism, we compare its solution with the optimal
solution that is obtainable in the full-information scenario
where all true private information is known. A mechanism
is O(g(n,m))-approximation if the ratio between the optimal
solution and the mechanism is O(g(n,m)).

In this paper, we consider agents’ truthfulness in expec-
tation and design randomized mechanisms to maximize the
expected total procured value of buyers.

3 Mechanism Design
The proposed mechanism needs to guarantee the truthfulness
of sellers in bidding their costs and the truthfulness of buy-
ers in claiming their budgets. Since sellers’ item values are
heterogeneous, an efficient mechanism needs to adopt differ-
ent payment to sellers. Moreover, buyers have heterogeneous
budgets, and therefore diverse abilities to procure items from
the sellers, which adds another challenge to design the mech-
anism.

To address the challenge above, we design a random-
ized mechanism, called GRM, by randomly combining two
sub-mechanisms. In general, we try to divide the seller-
s into two groups and conquer them separately in two sub-
mechanisms. That is, sellers with small bids (no greater than
Bmin

3 ) and sellers with large bids (greater than Bmin

3 ). The
first sub-mechanism, namely, UNIFORMMECH or UM for
short, tackles the sellers with small bids. While for the sell-
ers with large bids, we design the second mechanism, name-
ly, GREEDYMECH, that uses a greedy allocation. In detail,
GRM returns the results of Mechanism UM with probability
7
12 and returns the results of GREEDYMECH with probability
5
12 . Note that to slightly improve the performance, we run
GREEDYMECH over the original input with all n sellers.

The high level idea of Mechanism UM is as follows. Since
sellers have small bids, we take into account a part of each
buyer’s budget, namely, Bi

3 , and just use the virtual total bud-
get

∑
1≤m

Bi

3 . Then, we choose the sellers in the order of

non-decreasing value bj
vj

successively until a certain thresh-
old is violated. Once the winning sellers are determined, we
introduce a notion based on the obtained threshold, namely,
the quota of each buyer, to measure the diverse procurement

1We do not allow buyers to borrow money from outside, and
if a buyer borrows the money before it enters the market, then we
consider this borrowed amount within its true budget. A buyer can
be detected and punished with infinite cost when it overbids.

Mechanism 1 General Random Mechanism GRM(B, b, V)

1: Let S̃ = {sj : bj ≤ Bmin

3 } be the sellers with bids
no greater than Bmin

3 , and denote by b̃ the corresponding
bids of the sellers and denote by Ṽ the values of their
items.

2: With probability 7
12 , return UNIFORMMECH(B, b̃, Ṽ )

3: With probability 5
12 , return GREEDYMECH(B, b, V )

ability of buyers. After determining the winning sellers and
the quota of each buyer, we generate a virtual allocation by
assigning the items of winning sellers virtually to buyers, in
which an item may be assigned to different buyers. Last, we
design a random allocation rule and generate a real allocation
based on the virtual allocation.

In detail, it works as follows. Since the sellers have bids no
greater than Bmin

3 , we first use each buyer’s one-third budget
Bi

3 as a virtual budget, and denote by Bt =
∑

1≤m
Bi

3 the
sum of each buyer’s virtual budgets. Before selecting win-
ning sellers, we sort the sellers with small bids in the order of
non-decreasing price-per-value bj

vj
. We test each seller suc-

cessively. If the j-th seller sj satisfies bj
vj
≤ Bt∑

h≤j vh
, then sj

will be selected as a winning seller. Assume that sk is the last
winning seller, then we have bk+1

vk+1
> Bt∑

h≤k+1 vh
. Accord-

ingly, we define q = min{ Bt∑
j≤k vj

, bk+1

vk+1
} to be the virtual

critical threshold. Then, in the virtual allocation, buyer ai is
allowed to procure at most wi = Bi

3q total value , called quota
of buyer ai, and the items of winning sellers will be allocated
in non-decreasing order of value bj

vj
to the buyers according to

their increasing index. According to such an allocation rule,
buyers with smaller index would have higher priority to con-
sume their quota. We denote by V (Bi, B−i, b) the amount of
value buyer ai procured in the virtual allocation, which will
be written as V (Bi) for short if no ambiguity arises. Note
that

∑
1≤i≤m wi = Bt

q ≥
∑

1≤j≤k vj , which implies that
the total value of items to be allocated is not greater than the
total quota of buyers and thus some buyer with larger index
may be allocated with V (Bi) < wi or even V (Bi) = 0.

Next, we generate a real allocation by designing a ran-
dom allocation rule so that the expected total value procured
by buyer ai is exactly equal to V (Bi), the total value ob-
tained in the virtual allocation. The detailed implementa-
tion is as follows. We allocate the winning sellers in the
increasing order of price-per-value to the buyers according
to their increasing index. Knowing that the first i buyers
can procure at most

∑
i′≤i wi′ value, after allocating the first∑

j′≤j−1 vj′ virtual sellers, we check whether assigning all
vj value of seller sj would exceed the limit

∑
i′≤i wi′ . If it

does not exceed the limit, we allocate seller sj to buyer ai
with probability

min{
∑

j′≤j vj′−
∑

i′≤i−1 wi′ ,vj}
vj

. If it exceeds
the limit, we allocate seller sj to buyer ai with probability
min{

∑
i′≤i wi′−

∑
j′≤j−1 vj′ ,wi}

vj
. This would use up the quota
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Mechanism 2 Mechanism UNIFORMMECH(B,b,V)
Input: B, b with all bj ≤ Bmin

3 , V .

1: Let Bt =
∑

i≤m
Bi

3 .

2: Sort sellers in the order of non-decreasing value bj
vj

.
3: // Selecting winning sellers.
4: j ← 1

5: while bj
vj
≤ Bt∑

j′≤j vj′
do

6: j ← j + 1, Sw ← Sw ∪ {sj}
7: Let sk be the last winning seller and q =

min{ Bt∑
j≤k vj

,
bk+1

vk+1
}.

8: // Allocation and Payment scheme
9: Let the quota wi = Bi

3q .
10: Generate a virtual allocation by allocating the items from

the first k sellers to buyers according to their increasing
index without exceeding each buyer’s quota. According-
ly, each buyer ai is allocated with at most Bi

3q value of
items.

11: Set i = 1, j = 1 and generate a real allocation as follows.
12: while i ≤ m, j ≤ k do
13: if

∑
j′≤j vj′ ≤

∑
i′≤i Ni′ then

14: with probability
min{

∑
j′≤j vj′−

∑
i′≤i−1 wi′ ,vj}

vj
: al-

locate seller sj to buyer ai.
15: j ← j + 1
16: else
17: with probability

min{
∑

i′≤i wi′−
∑

j′≤j−1 vj′ ,wi}
vj

: al-
locate seller sj to buyer ai.

18: i← i + 1
19: The buyer allocated with seller sj pays min{vj ·

q, Bmin

3 }.

of buyer ai and we consider the next buyer ai+1. Moreover,
the buyer who gets the allocation rewards seller sj with pay-
ment min{vj · q, Bmin

3 }, which is the key to guarantee the
truthfulness. The process repeats until all the first k items are
allocated. Note that the virtual budget is set with one-third of
the original budget, which guarantees that even if a buyer is
allocated with a seller exceeding the limit twice (when gen-
erating the real allocation), the buyer can use the remaining
two-thirds of its budget to pay the seller without violating the
budget feasibility.

Now, we design the second mechanism GREEDYMECH,
which intends to avoid missing the possible high value items
of sellers with large bids. Any seller who bids bj > Bmin

would not be allocated. W.l.o.g., we assume bj ≤ Bmin for
all sj , which is consistent with the assumption cj ≤ Bmin.
The high level idea of GREEDYMECH is simple, i.e., selec-
t the high-value sellers and pay each selected seller a max-
imum payment Bmin (since all bj ≤ Bmin). In detail, it
computes the total number

∑
1≤i≤mb

Bi

Bmin
c of items that can

be procured with payment Bmin. Then, it allocates the top
K = min{

∑
1≤i≤mb

Bi

Bmin
c, n} highest-value sellers to the

buyers according to their increasing index, and accordingly
gets a final allocation.

Mechanism 3 Mechanism GREEDYMECH(B, b, V)
1: Sort the sellers by non-increasing item values.
2: K ← min{

∑
1≤i≤mb

Bi

Bmin
c, n}

3: Allocate the first K sellers in highest-value-first order to
the buyers with increasing index, where buyer ai buys
b Bi

Bmin
c items and each seller gets payment Bmin.

Finally, we have our general mechanism GRM by combin-
ing UNIFORMMECH and GREEDYMECH randomly.

4 Theoretical Guarantees of Performance
In this section, we analyze the performance of the mechanis-
m. Firstly, we have the following basic property of Mecha-
nism UM according to its allocation rule.

Lemma 1. For Mechanism UM, we have bk
vk

≤
Bt∑
j≤k vj

, bk+1

vk+1
> Bt∑

j≤k+1 vj
.

4.1 Budget-Feasibility, Individual-Rationality
First we show the budget feasibility. For GREEDYMECH, it
is easy to see the budget feasibility. For UM, buyer ai pays
min{vj · q, Bmin

3 } ≤ vj · q when a seller with value vj is
allocated to it. Since the total value procured by buyer ai is at
most Bi

3q , its total payment is at most Bi

3q ·q ≤
Bi

3 in the virtual
allocation generated by Mechanism UM. Furthermore, when
the real allocation is generated in the random allocation, buy-
er ai gets at most two extra sellers randomly allocated to it
(respectively when the limit

∑
i′≤i−1 wi′ and

∑
i′≤i wi′ are

exceeded). Thus, it only needs to reward at most two extra
sellers (which have small bids and each should be paid at most
Bmin

3 ) using the remaining two-third of its budget. Thus, the
budget feasibility holds. Therefore, Mechanism GRM is bud-
get feasible.

Next, we prove the individual rationality. For
GREEDYMECH, it is easy to see its individual rationality s-
ince the payment for each winning seller is Bmin > bj . For
Mechanism UM, if seller sj is not selected, its utility is ze-
ro. If seller sj is selected, its utility is pj − cj . Since sj is a
winning seller, we have bj

vj
≤ bk

vk
≤ Bt∑

j≤k vj
and bj

vj
≤ bk+1

vk+1
.

Thus, bj
vj
≤ q. Moreover, the seller has small bid bj ≤ Bmin

3 .

Therefore pj = min{vj · q, Bmin

3 } ≥ bj . Thus, its utility is
non-negative, implying individual rationality.

4.2 Sellers’ Truthfulness
We will show that GRM is truthful. Since sellers with cost
ci ≥ Bmin

3 would not underbid to participate in mechanis-
m UM, it suffices to prove that the two sub-mechanisms are
truthful, respectively. First, we analyze GREEDYMECH first.
Clearly, each seller cannot get more payment by false bidding
because we select sellers based on highest-value-first rule and
the payment for each winning seller is constant Bmin. Thus,
GREEDYMECH satisfies sellers’ truthfulness.

Next we analyze the sellers’ truthfulness in UM. We first
introduce a theorem for verifying the truthfulness in the single
parameter domain.
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Theorem 1. (Monotone theorem, [Myerson, 1981]) In sin-
gle parameter domains, if each agent’s utility follows the form
uj(bj) = pj − cj , a mechanism M = (f, p) is truthful iff:

• f is monotone: ∀si ∈ S, if c
′

i ≤ ci, then si ∈ f(ci, c−i)

implies si ∈ f(c
′

i, c−i) for every c−i;
• winners are paid threshold payments: the payment to

each winning bidder is the critical value inf{ci : i /∈
f(ci, c−i)}.

We prove the sellers’ truthfulness of the mechanism by
showing that it satisfies the theorem above.
Theorem 2. Mechanism UM satisfies sellers’ truthfulness.
Proof. Monotonicity: Suppose bk is the last winning bid in
mechanism UM, and we have bk

vk
≤ Bt∑

j≤k vj
. For any seller

with j ≤ k, it is obvious that seller sj is selected, i.e., bj
vj
≤

Bt∑
h≤j vh

. If sj decreases its bid to be b′j ≤ bj , according
to the allocation scheme of Mechanism UM, it is clear that
b′j
vj
≤ Bt∑

h≤j vh
since bj

vj
≤ Bt∑

h≤j vh
. Thus, seller sj will still

be selected as a winning seller. Therefore, Mechanism UM is
monotonic.

Threshold payments: In Mechanism UM, let bk denote the
last winning seller. For any winning seller sj , the payment
is pj = min{vj · q, Bmin

3 }, where q = min{ bk+1

vk+1
, Bt∑

j≤k vj
}.

Assume that seller sj increases its bid to b′j . Clearly, bidding
bj >

Bmin

3 would make the seller fail to be selected in Mech-
anism UM. Thus, it remains to show that any seller bidding
higher than vj · q will not be selected. We distinguish two
cases of value q:
Case 1 ( bk+1

vk+1
≤ Bt∑

j≤k vj
): In such case, q = bk+1

vk+1
and

bk+1

vk+1
> Bt∑

j≤k+1 vj
by Lemma 1. When seller sj with j ≤ k

bids b′j > vj · q, we have b′j
vj

> q =
bk+1

vk+1
> Bt∑

j≤k+1 vj
. As-

sume that sj is ranked in the t-th place with t ≥ k + 1 after

bidding. That is, bk+1

vk+1
≤ ... ≤ b′j

vj
. Suppose on the con-

trary that sj is still selected in such case, which implies that
b′j
vj
≤ Bt∑

h≤j−1 vh+
∑

j+1≤h≤t vh+vj
≤ Bt∑

j≤k+1 vj
. This leads

to a contradiction. Thus, seller sj will not be selected as a
winning seller. Therefore, the value vj · q is the critical value
and the winning sellers are paid threshold payment.
Case 2 ( bk+1

vk+1
> Bt∑

j≤k vj
): We have q = Bt∑

j≤k vj
. When

seller sj with j ≤ k bids b′j > vj · q, we have
b′j
vj

> q =
Bt∑
j≤k vj

. Assume that seller sj is ranked in the t-th place with

t ≥ k after bidding, that is, bk
vk
≤ ... ≤ b′j

vj
. Suppose on the

contrary that sj is still selected in such case, which implies

that
b′j
vj
≤ Bt∑

1≤h≤j−1 vh+
∑

j+1≤h≤t vh+vj
≤ Bt∑

j≤k vj
. This

leads to a contradiction. Thus, seller sj will not be selected
as a winning seller. Therefore, the value vj · q is the critical
value and the winning sellers are paid threshold payment.

Based on the analysis of two cases above, Mechanism UM
guarantees sellers’ truthfulness.

Therefore, we conclude that Mechanism GRM guarantees
sellers’ truthfulness.

4.3 Buyer’s Truthfulness
We will show buyers’ truthfulness of Mechanism UM first
and then consider GREEDYMECH.

To prove buyers’ truthfulness of Mechanism UM, we first
show that the expected total value that buyer ai procured
through the random allocation rule is equal to V (Bi) in the
following lemma. The detailed proof is omitted here due to
space limit.
Lemma 2. The expected total value that buyer ai procured
through the random allocation rule is equal to V (Bi).

Then, we show that the expected procured value of any
buyer ai would not increase, i.e., V (B′i) ≤ V (Bi). Assume
the one-third of buyers’ total virtual budget is B′t and the vir-
tual critical threshold is q′ when buyer ai underbids a lower
budget B′i < Bi. We use V (B′i) to denote the expected total
value procured from sellers and assume the mechanism se-
lects the first r sellers as winning sellers in such case. Let
B =

∑
i≤m Bi and ∆B = B − Bi =

∑
h≤m,h 6=i Bh and

V =
∑

j≤k vj .
The total budget Bt would decrease when running mecha-

nism UM if buyer ai underbids. Thus, the number of winning
sellers cannot be increased, i.e., Sw = {sj : j ≤ r} where
r ≤ k, which implies the total procured value does not in-
crease. Otherwise, the mechanism could have more winning
sellers when ai bids its true budget according to the allocation
rule. According to the virtual allocation in Mechanism UM,
the sellers are allocated to the buyers according to buyers’ in-
creasing index. Assume that al is the first buyer who has not
used up its quota in the virtual allocation. That is, all buyers
with i ≤ l−1 use up their quota and all buyers with i > l have
not procured any value. Accordingly, let Ã = {ai : i ≥ l}.
We prepare a basic lemma as follows.
Lemma 3. If q′ ≤ q when a buyer ai ∈ Ã underbids, we
have V (B′i) ≤ V (Bi).
Proof. Note that each buyer after al (whose index is larger
than l) is not allocated any value in the true bidding. The to-
tal value of winning sellers that is used for allocation is not
increased as r ≤ k in the false bidding. Since q′ ≤ q after
false bidding, the quota for each buyer before al cannot be
decreased. Thus, if al misreports, then buyers before it still
have higher priority to be allocation, thus the value allocated
to al would not increase. Moreover, if buyer ai ∈ Ã\{al}
misreports, then ai is not allocated any value in the true bid-
ding and the quota of buyers prior to ai does not decrease
after false bidding. Thus, ai still does not procure any value.
Therefore, we have V (B′i) ≤ V (Bi).

Now we show that buyer ai cannot increase its utility. We
discuss it by two cases of value q.
Case 1 (q = Bt

V ≤ bk+1

vk+1
): When buyer ai reports a low-

er budget B′i, the virtual critical threshold may change to
q′ = min{ B′t∑

j≤r vj
, br+1

vr+1
}. If ai /∈ Ã, the expected total value

V (Bi) = Bi

3q = Bi

Bi+∆B · V since its quota is used up. Next,
we distinguish two cases of q′:
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Case 1.1 ( q′ =
B′t∑
j≤r vj

≤ br+1

vr+1
): We first consider the case

of r = k. We have q′ =
B′t
V ≤ Bt

V = q where the first
equation follows by r = k and the inequality holds by B′t <

Bt. If ai ∈ Ã, it is clear that V (B′i) ≤ V (Bi) by Lemma 3. If
ai /∈ Ã, then we have V (B′i) ≤

B′i
3q′ =

B′i
B′i+∆B · V where the

first inequality is true because each buyer’s expected procured
value from sellers is at most the quota computed in the virtual
allocation. Since B′i

B′i+∆B ≤
Bi

Bi+∆B when B′i < Bi, we have

V (B′i) ≤
B′i

B′i+∆B · V ≤
Bi

Bi+∆B · V = V (Bi) .
Next, we consider the case of r < k. According to the

precondition q′ =
B′t∑
j≤r vj

≤ br+1

vr+1
, we have q′ ≤ br+1

vr+1
≤

bk
vk
≤ Bt

V = q where the last inequality holds by Lemma 1.

Thus, q′ ≤ q. If ai ∈ Ã, we have V (B′i) ≤ V (Bi) by Lemma
3. If ai /∈ Ã, the expected value procured from sellers is
V (B′i) ≤

B′i
3q′ =

B′i
B′i+∆B

·
∑

j≤r vj ≤
Bi

Bi+∆B
· V = V (Bi)

where the second inequality is because B′i
B′i+∆B ≤

Bi

Bi+∆B

when B′i < Bi and
∑

j≤r vj ≤ V =
∑

j≤k vj . That is,
V (B′i) ≤ V (Bi) .
Case 1.2 ( q′ = br+1

vr+1
<

B′t∑
j≤r vj

): We first consider the case

of r = k. We have q′ = bk+1

vk+1
<

B′t∑
j≤k vj

since r = k.

Since B′t < Bt, we have bk+1

vk+1
<

B′t∑
j≤k vj

< Bt∑
j≤k vj

which

contradicts the condition Bt

V ≤
bk+1

vk+1
. Thus, it is impossible

that r = k.
Next, we consider the case of r < k. We have q′ = br+1

vr+1
≤

bk
vk
≤ Bt

V = q where the second inequality holds by Lemma 1,

thus q′ ≤ q. If ai ∈ Ã, we have V (B′i) ≤ V (Bi) by Lemma
3. If ai /∈ Ã, we have V (B′i) ≤

B′i
3q′ =

B′i

3·
br+1
vr+1

. We also know

br+1

vr+1
>

B′t∑
j≤r+1 vj

because seller sr+1 is not selected as a

winning seller. Thus, we have V (B′i) ≤
B′i

3·
br+1
vr+1

<
B′i

B′i+∆B
·∑

j≤r+1 vj ≤
Bi

Bi+∆B
· V = V (Bi).

Case 2 (q = bk+1

vk+1
< Bt

V ): For this case, the technical proof
is also involved but similar to Case 1, which is omitted here
due to space limit.

Therefore, Mechanism UM satisfies buyers’ truthfulness.
Next, we prove buyers’ truthfulness in GREEDYMECH. Buy-
er ai can procure at most b Bi

Bmin
c items since B′i < Bi. The

expected procured value of buyer ai cannot increase because
sellers are allocated in the order of highest-value-first to buy-
ers according to their index. Therefore, GREEDYMECH sat-
isfies buyers’ truthfulness.

Therefore, Mechanism GRM satisfies buyers’ truthfulness.

4.4 Approximation
Let Vu(S1) denote the total value procured in UM with the
candidate sellers in set S1 and similarly let Vg(S2) denote
the total value of items procured in GREEDYMECH with the
candidate sellers in set S2 where S1 = {sj |bj ≤ Bmin

3 },

S2 = {sj |bj > Bmin

3 } and S = S1 ∪ S2. Correspondingly,
we denote by OPT (S1) and OPT (S2) the optimal solution
with input of S1 and S2, respectively.
Lemma 4. Mechanism UM achieves an approximation ratio
of 4 + 3

m−1 ≤ 7 , where m is the number of buyers.
Proof. To analyze the approximation of Mechanism UM, we
distinguish two kinds of bids, the ones with price-per-value
less than q and the ones with price-per-value no less than
q. First, we consider the bids with peice-per-value less than
q. By the definition of q, we have bk+1

vk+1
≥ q and all seller-

s with price-per-value less than q have at most a total value∑
j≤k vj . For the optimal solution, the best case is that it

buys all
∑

j≤k vj amount of value with total cost 0.
Next, we consider the bids with price-per-value no less

than q. The best case is that all the bids in {bj |j ≥ k+1, bj ∈
b} are equal to q and the optimal solution pays each sell-
er vj · q. In such case, we can procure at most Bt

q value
from these sellers given a total budget Bt. If q = Bt

V , then
Bt

q =
∑

j≤k vj . If q = bk+1

vk+1
, then Bt

q
= Bt

bk+1
vk+1

≤ Bt
Bt∑

j≤k+1
vj

=∑
j≤k+1 vj since Bt∑

j≤k+1 vj
≤ bk+1

vk+1
by Lemma 1. For both

cases, we have Bt

q ≤
∑

j≤k vj + vk+1. However, for the op-
timal solution, it has the full amount of each buyer’s budget,
which equals 3Bt. Thus, the optimal solution can get at most
3Bt

q ≤ 3
∑

j≤k vj + 3vk+1 value from sellers with price-per-
value no less than q.

Combining the two cases above, the optimal solution can
procure at most 4

∑
j≤k vj + 3vk+1 value from all sellers.

Therefore,

OPT (S1)

Vu(S1)
≤

4
∑

j≤k vj + 3vk+1∑
j≤k vj

= 4 +
3vk+1∑
j≤k vj

(1)

By Lemma 1, we have (
∑

j≤k+1 vj) ·
bk+1

vk+1
> Bt. Thus,

vk+1 <
bk+1 ·

∑
j≤k vj

Bt − bk+1
≤

Bmin
3
·
∑

j≤k vj

m · Bmin
3
− Bmin

3

=

∑
j≤k vj

m− 1
(2)

The reason for the second inequality is that each candidate
seller’s bid in Mechanism UM is at most Bmin

3 and the budget
for any buyer is at least Bmin. Combining (1) and (2), we
have OPT (S1)

Vu(S1) ≤ 4 + 3vk+1∑
j≤k vj

≤ 4 + 3
m−1 ≤ 7.

The following lemma further show that the simple
greedy mechanism GREEDYMECH for large bids is 5-
approximation. The intuition is that the value procured from
sellers with large bids in GREEDYMECH is close to the opti-
mal solution (which should pay each seller with large bid at
least Bmin

3 ). The detailed proof is omitted due to space limit.
Lemma 5. GREEDYMECH achieves a 5-approximation.

Finally, for Mechanism GRM, the total procured value is
V (S) = 7

12 · Vu(S1) + 5
12 · Vg(S) ≥ 1

12 · (OPT (S1) +

OPT (S2)) ≥ 1
12 ·OPT (S).

Theorem 3. Mechanism GRM achieves an O(1)-
approximation.
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