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In many social domains involving collective decision-making (e.g., committee selection and 
survey sampling), it is often desirable to select individuals from different population groups 
to achieve proportional representation (e.g., to represent the opinions of each group). For 
instance, in the selection of a committee (e.g., to form a working group within a company), 
the planner would like to select agents from different groups to represent their respective 
groups proportionally. Typically, there are intrinsic private costs for agents to represent 
their groups, and the planner would like to compensate the selected agents via some 
form of payments, which is constrained by the planner’s available budget. As the costs 
are unknown to the planner, the planner is required to design incentive mechanisms to 
elicit agents’ real costs and provide payments (or monetary incentives) to the selected 
agents to ensure proportional representation and the total payments do not exceed the 
budget. Such a mechanism design setting falls into the budget-feasible mechanism design 
paradigm. However, existing budget-feasible mechanisms only consider all agents to be in 
the same group with non-proportional objectives. To study the above-mentioned setting, 
we consider the problem of designing budget-feasible mechanisms for selecting agents 
with private costs from various groups to ensure proportional representation, where the 
minimum proportion of the overall value of the selected agents from each group is 
maximized. We study this problem by first considering the setting with homogeneous 
agents who have identical values to the planner. Depending on agents’ membership in the 
groups, we consider two models: a single group model where each agent belongs to only 
one group, and a multiple group model where each agent may belong to multiple groups. 
We propose novel budget-feasible proportion-representative mechanisms for these models 
that require different selection methods, i.e., a novel greedy mechanism that considers 
all possible proportion ratios for the single group model and a novel mechanism that 
leverages the Max-Flow algorithm to evaluate the proportional representation for the 
multiple group model, to choose representative agents from each group. The proposed 
mechanisms guarantee theoretical properties of individual rationality, budget-feasibility, 
truthfulness, and approximation performance on maximizing the minimum proportional 
representation of each group. We also provide a matching lower bound for budget-feasible 

✩ The previous version of this paper appeared at IJCAI 2021 [1] with title “Budget-feasible Mechanisms for Representing Groups of Agents Proportionally”. 
The earlier paper focused on budget-feasible proportion-representative mechanisms on homogeneous agents who hold identical values. We non-trivially 
extend the previous mechanisms to the heterogeneous agent setting where agents have different values. We elaborate on our new contributions in Section 5.
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proportion-representative mechanisms. Finally, we non-trivially extend these mechanisms 
to the settings of heterogeneous agents who can have different values to the planner under 
the two models.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In many real-world scenarios such as conducting surveys [2], selecting representatives [3], public opinion prediction [4], 
voting [5] and school choice [6], it is important to select a proportional number of agents from each population group to 
best represent the overall population. For instance, when conducting surveys in crowdsourcing platforms [7–9], the orga-
nizer typically is required to gather information from individuals among different populations (e.g., geographic locations) 
via websites [10] or mobile smartphones [11]. For the survey data to be representative or useful for various applications 
(e.g., for building generalizable prediction of public opinion [12] or forecasting models to reflect the underlying population 
distributions [13]), we need to select proportional numbers of individuals from different populations. Inadequate propor-
tional representation can affect generalisability, e.g., inaccurate poll predictions due to lack of representative samples [9]. 
While achieving proportional representation can be a straightforward process in crowdsourcing surveys, the challenge is to 
identify appropriate payments to the agents such that we can incentivize agents to participate in the surveys [14,15] and 
the total payment is no more than the allowable budget.1 Indeed, different agents might require different desirable rewards 
to participate, and the reward information might not be known to the organizer publicly.

Another example is committee selection, where the planner needs to select members from a set of candidates described 
by various attributes (e.g., gender, age, profession, and division) such that each attribute offers a certain representation 
[18]. Typically, the chosen member is required to undertake additional duties, e.g., managing the company and organizing 
campaigns, which result in the consumption of time and attention. In exchange for their services, it is natural to reward 
chosen members via monetary payments [19] (e.g., salaries, bonus, or funding for traveling), which should be constrained 
by a predefined budget (e.g., funding for constructing a committee [20]). However, the required rewards for members can 
be different and privately known by themselves.

Because the agent desired rewards are often unknown to the social planner and the social planner has a budget in 
many domains (including the above-mentioned settings), we must consider selecting appropriate agents and determining 
their payment schemes in order to achieve proportional representation (i.e., choosing proportional agents from each group). 
Without paying agents correctly, they can be unwilling to participate in the activity (e.g., completing the surveys or serving 
on the committee), which can lead to low participation rates (e.g., see studies regarding low survey response rates [21,22]). 
Therefore, in this paper, we aim to address the following question.

Can we design a mechanism that elicits private reward information from agents and selects agents to participate in the campaign 
in order to achieve proportional representation such that the total payments to the selected agents are no more than the budget?

The problem at hand can be cast naturally into a budget-feasible mechanism design setting [23]2 where the social 
planner seeks to design a computationally efficient mechanism that elicits true cost information from agents, selects agents 
to optimize some objective, and derives payments to the selected agents to ensure their total payment is no more than 
the budget. However, the design of budget-feasible mechanisms has not been considered in the considered proportional 
representation setting with different groups of agents.

1.1. Our contributions

We consider the problem of designing budget-feasible mechanisms for selecting agents proportionally from groups sat-
isfying standard desirable properties (i.e., individual rationality, budget-feasibility, and truthfulness [23]). In particular, there 
are n agents S = {s1, s2, ..., sn} and m groups G = {G1, G2, ..., Gm}, where group G j is a non-empty subset of S . We use 
G(si) to denote the set of groups that agent si belongs to. Agent si has a value vi to the planner. The planner has a budget 
B ∈R+ and each agent si has a private cost ci ∈R+ .

1.1.1. Homogeneous agents
We first consider homogeneous agents who have identical values to the planner, i.e., vi = 1, ∀1 ≤ i ≤ n. As selecting a 

proportional number of agents from each population group to best represent the overall population has been well studied 
in many real-world scenarios such as conducting surveys [2], selecting representatives [3], public opinion prediction [4], 

1 Typically, the organizer has a limited budget for conducting a crowdsourcing task [16,17]. Trivially, if there is no budget, the organizer can pay agents 
a very high amount which might be unnatural for many domains.

2 We refer to the mechanism that guarantees budget-feasibility as a budget-feasible mechanism.
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voting [5] and school choice [6]. Thus, we are inspired to consider the proportionality among groups that we want to 
choose proportional agents from each group under the budget constraint. To ensure proportional representation, we carefully 
formulate the planner’s objective as to select agents from different groups that maximizes the minimum proportional ratio 
of the selected agents among groups, i.e., max min1≤ j≤m

Q j∑
si∈G j

vi
where Q j is the total value of chosen agents in group 

G j . This objective is based on a well-studied notion of proportional representation (e.g., the electoral system requires the 
minimum vote proportion which is the ratio between the number of voters and population in each group for representation 
[24,25], specifying an exact allocation of votes to different groups proportionally [26] and maximizing the minimum diversity 
fairness among different groups [27,28]).

We differentiate two general models that depend on whether each agent belongs to (1) one group (i.e., |G(si)| = 1) or 
(2) multiple groups (i.e., |G(si)| ≥ 1). Within the multiple group model, we use xij ∈ {0, 1}, si ∈ S w to denote whether group 
G j is counted once when si is chosen. Then, we further consider (2a) the single counting case in which a selected agent is 
counted exactly once in one of the groups she belongs to, i.e., 

∑
j∈G(si)

xij = 1 if si ∈ S w , and (2b) multiple counting case 
in which a selected agent is counted in all groups she belongs to, i.e., ∀ j ∈ G(si), xij = 1 if si ∈ S w . For example, in survey 
collection, consider surveying individuals with different occupations (e.g., doctors and teachers) or work experiences (e.g., 
1-2 years, ..., 10 years or more), where each category can be viewed as a group. The single group model can be appropriate 
for survey gathering when the data analysis focuses on a single attribute such as occupations or work experiences only (e.g., 
to measure certain characteristics) or political polling (e.g., to measure population opinions). Similarly, the multiple group 
model with multiple counting can be appropriate for survey gathering when the data analysis is conditional on a certain 
attribute (e.g., conditional on an occupation to gather statistics with respect to work experiences). The multiple group 
model with single counting is particularly useful for data gathering dealing with A/B testing [29] or human subject research 
[30] with randomized trials where each subject is matched to a trial that is appropriate for their attribute (e.g., either a 
particular occupation or a particular work experience to observe their proficiency or skill levels for given tasks). Because 
different trials often have overlapping components and subjects can learn from previous trials, subjects often participated 
in only one randomized trial to limit spillover effects.

For these models, under the goal of maximizing the minimum proportional ratio of selected agents among groups, we 
design budget-feasible proportion-representative mechanisms. The proposed mechanisms achieve desirable theoretical prop-
erties, including budget-feasibility, individual rationality, truthfulness, and approximation guarantee. We note that existing 
budget-feasible mechanism approaches do not apply directly (see Section 2 for more discussion). As a result, we design 
several novel mechanisms for our models. Table 1 shows the performance of our mechanisms (when the mechanisms can 
select at least one agent from each group). Note that, as we will show, other possible mechanisms can also fail to obtain 
good approximation ratios when our mechanisms cannot select more than one agent. See Section 4 and 5 for more detail.

In particular, for (1), we construct a novel greedy mechanism that selects agents proportionally from each group and 
pays chosen agents appropriately for budget-feasibility. The proposed mechanism achieves approximation performance that 
depends on the size of the largest and smallest groups. Moreover, we show a matching lower bound for any budget-feasible 
proportion-representative mechanism.

For the multiple group model (2a) or (2b), we construct a novel mechanism that leverages the Max-Flow algorithm [31]
to evaluate the proportional representation under a given subset of agents, in which we can find the candidate agent set 
with the greatest proportional representation within the budget constraint. We then apply the minimum weight matching to 
identify the final selected agents from the candidate agent set, whereby the estimated maximum proportional representation 
can be obtained, and the corresponding payment can be determined. The designed mechanisms in this model achieve 
approximation performance that depends on the size of the groups.

1.1.2. Heterogeneous agents
In the above settings, each agent represents a single unit in their corresponding population groups (e.g., contributing to 

a single survey or randomized trial). In some scenarios, an agent can actually provide more contributions beyond a single 
unit. For instance, consider a crowdsensing setting for monitoring the air qualities of different regions [32]. Each region 
consists of a set of agents corresponding to the region size. Each agent can measure the air qualities of a different number 
of (randomly sampled non-overlapping) locations within the regions predetermined by the planner [33,34]. Therefore, an 
agent’s contribution is heterogeneous, and the social planner needs to select proportional numbers of agents in order to 
obtain good estimations of air qualities across different regions. The single group model and multiple group model with 
single counting can naturally capture the crowdsensing setting in which agents can only be assigned to measure the air 
qualities in a single region. The multiple group model with multiple counting can be used to capture situations where an 
agent measures the air qualities of locations in the boundary of different regions. As a result, an agent can belong to two 
different regions and be accounted for in both regions simultaneously.

As another example, when conducting surveys (e.g., regarding habits or certain behaviors), each agent can gather or 
provide multiple units of responses from their friends, families, coworkers, or neighbors within their regions or groups 
[35,36]. Therefore, to obtain a representative of the different groups or regions of populations, the planner should select 
appropriate agents whose total number of provided surveys is proportional to the sum of surveys that can be collected by 
all agents in this group. The considered single group and multiple group models can be used to capture different situations 
of conducting surveys for data analysis (as discussed earlier).
3
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Table 1
Our Approximation Results. The parameters m, α, σ , and η denote the number of groups, the ratio of the maximum and the minimum number of agents 
among groups, the ratio of the maximum and minimum value of agents, and the ratio of the maximum and minimum total value of agents among groups, 
respectively. UB and LB refer to upper bounds and lower bounds, respectively. This table shows the approximation performance when mechanisms can 
select at least one agent from each group. We also show that no budget-feasible proportion-representative mechanisms can do much better either when 
our mechanisms cannot select at least one agent in Section 4 and 5.

UB LB

Homogeneous
Single Group 3 + α (Th. 4)

�(α) (Th. 5)
Multiple Group

Single Counting mα(α + 2) + 1 (Th. 8)
Multiple Counting mα(α + 2) + 1 (Th. 10)

Heterogeneous
Single Group (m + 1)(1 + ση) (Th. 13)

�(ση) (Th. 14)
Multiple Group

Single Counting mη(1 + σ)(1 + ση) + 1 (Th. 17)
Multiple Counting mη(1 + σ)(1 + ση) + 1

The above two examples illustrate the importance of considering the heterogeneous values of agents, i.e., agents’ values 
vi can be different.

The social planner now has the objective of maximizing the minimum proportional ratio of the total value of the selected 
agents from each group. Similarly, we consider the single group and multiple group models. We non-trivially extend the 
mechanisms for homogeneous agents to the heterogeneous setting. In particular, the main difference is that for the single 
group model (1), we design a non-trivial payment scheme to ensure agents’ truthfulness. For the multiple group model 
(2a) and (2b), we carefully choose the fractional budget used to select agents to ensure budget-feasibility when agents hold 
different values.

1.2. Comparison with traditional budget-feasible mechanisms

Generally, the standard approach for designing budget-feasible mechanisms has leveraged a greedy approach to select 
agents based on their value-to-cost ratios [23]. However, this approach cannot be used to achieve proportional selections 
directly as they choose agents by their bids without considering group attribution. As our initial starting point, we investi-
gate whether a similar greedy approach can work for our setting. It turns out that we can design appropriate selection and 
payment schemes for each group, e.g., use a greedy approach to select agents in each group (along with other techniques 
such as integer program and max-min flow in different models/settings). Therefore, the proposed (new greedy) mechanisms 
can achieve the objective of proportional representations while guaranteeing truthfulness and budget-feasibility.

An earlier version of the paper appeared at IJCAI 2021 focusing only on the homogeneous setting with omitted proofs. 
In this journal version, we included all the proofs and extended our results to the heterogeneous setting.

2. Related work

Budget-feasible mechanisms Since the original seminal work of budget-feasible mechanisms [23], many research efforts have 
been invested in designing budget-feasible mechanisms for various valuation functions of the buyer. Chen et al. [37] further 
develop improved mechanisms with better approximation ratios for the submodular value function, while Amanatidis et 
al. [38] consider symmetric submodular valuations, a prominent class of non-monotone submodular functions. Anari et al. 
[17] design a constant-approximation budget-feasible mechanism for large markets where sellers’ costs are far less than the 
buyer’s budget and show that it is impossible to achieve bound approximation ratio without the large market assumption 
when sellers’ items are divisible. Singer and Mittal [39] focus on designing pricing mechanisms with the objective of maxi-
mizing the number of finished tasks while guaranteeing budget-feasibility. However, these mechanisms in existing literature 
do not perform well for our settings directly as they do not consider agents’ groups and ensure proportional representa-
tion. In particular, these mechanisms greedily select agents with the lowest cost-per-value ratios irrespective of the group 
memberships, which may lead to the selected agents belonging to one group only if a similar greedy manner is used in the 
group setting (e.g., all the members in a single group have very low cost-per-value ratio). Thus, such a mechanism cannot 
ensure proportional representation.

Fairness/diversity in optimization perspective Note that proportional representation has been studied from the optimization 
or algorithmic perspective in various areas such as voting and electoral systems. For example, Procaccia et al. [5] focus on 
analyzing the complexity of achieving proportional representation. Buisseret and Prato [40] consider the voter preferences 
in proportional representation systems to understand the candidate selection and behavior. Flanigan et al. [3] pay attention 
to ‘citizens’ assemblies in which a panel of randomly selected constituents contributes to questions of policy and develop 
selection algorithms that can select representative people and in the spirit of democratic equality, individuals would ideally 
be selected to serve on this panel with equal probability. In addition, some works consider diversity fairness in matching/al-
location [41–43], school choice [44,45] (e.g., each school is endowed with a lower and an upper quota for each distinct 
type), housing allocation [46] (e.g., every ethnic group must not own more than a certain percentage in a housing project). 
These works mainly view diversity as a constraint while optimizing the general objectives (e.g., social welfare) or consider 
4
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balancing diversity and efficiency simultaneously [42]. However, in our model, we want to maximize the minimum selection 
ratio among different groups to ensure proportional representation.

Another related research direction is the (allocation) apportionment problem [47–49] in which some public resources 
(e.g., seats in the parliament) should be proportionally divided into different groups (e.g., parties or states). However, they 
mainly focus on the complete information scenario. In our model, each agent has a privately known cost and the chosen 
agent should obtain a payment as the reward (may not be equal to her cost due to the truthfulness requirement) under the 
budget constraint.

Fairness/diversity in mechanism design There are also some works taking the group attributes and diversity fairness into ac-
count when designing (auction) mechanisms. Ilvento et al. [50] consider the problem of fairness in advertising and propose 
the inter-category and intra-category fairness desiderata. Kuo et al. [51] and Finocchiaro et al. [52] consider the mechanism 
design problem by using a machine learning method to address fairness. Chawla et al. [53] first express the fairness con-
straint as a kind of stability condition and then introduce a new class of allocation algorithms to achieve a near-optimal 
trade-off between fairness and social welfare. Some literature considers the design of fair mechanisms in job processing. 
They study the max-min problem, e.g., makespan minimization [54,55], which is similar to our proportion-representative 
objective. Moreover, many works on school choice [56–58] consider the mechanism design problem with diversity con-
straints, that is, there is a specific minimum (maximum) quota of school for each student type, where agents may misreport 
their private preferences. However, these works do not consider the planner’s budget constraint and cannot guarantee the 
budget-feasibility. In addition, in our model, we aim to optimize the proportionality of agents in different groups, i.e., maxi-
mize the minimum selection ratio of agents among groups, which is much different from the required diversity constraints 
in previous works.

3. Preliminaries

In this section, we define the budget-feasible proportion-representative selection settings and the desirable properties of 
the mechanisms.

3.1. The model

There is a planner and a set of n agents S = {s1, s2, ..., sn}. The agents have group attributes, specifying one or more 
groups the agent belongs to, e.g., genders, ages, ethnicities, regions, and educational levels. There are m groups G =
{G1, G2, ..., Gm}, where group G j is a non-empty subset of S , i.e., ∅ �= G j ⊆ S and G1 ∪ G2 ∪· · ·∪ Gm = S . Let G(si) denote the 
set of groups that agent si belongs to. Let n j be the number of agents in group G j , i.e., |G j| = n j . Denote by nmin and nmax the 
minimum and maximum number of agents among all the groups respectively, i.e., nmin = min1≤ j≤m n j, nmax = max1≤ j≤m n j . 
The agents are to be selected by the planner for proportional representation.

The planner has a budget B ∈ R+ and each agent si has a private cost ci ∈R+ (e.g., her required cost for time, privacy, 
or fees) when selected to represent her group(s). We use c = (ci)

n
i=1 to denote agents’ costs. Let c−i denote all costs except 

si ’s cost ci . Moreover, agent si has a value vi , and agents are homogeneous if values are identical, i.e., vi = 1, ∀1 ≤ i ≤ n, 
otherwise, agents are heterogeneous. Let v = (vi)

n
i=1 denote agents’ values. The agents may act strategically to maximize 

their own utilities by misreporting their costs. Each agent bids a cost bi that may be different from her real cost ci in order 
to maximize her utility (defined below). Let b = (bi)

n
i=1 denote agents’ bid profile and b−i denote all bids except si ’s bid bi . 

We sometime use (bi, b−i) to represent b to highlight si ’s bid. We use P = (pi)
n
i=1 to denote agents’ payments.

3.2. The mechanism

A mechanism M = (X, P ) consists of an allocation rule X(b) = (xi)
n
i=1 : Rn+ → {0, 1}n deciding the selected agents (who 

are chosen by the planner) and a payment scheme P (b) : Rn+ → Rn+ deciding the payment to each agent. Denote by S w

the selected agent set, i.e., S w = {si | xi(b) = 1}. Given a mechanism M , the utility of agent si is defined as the difference 
between the payment she receives and her true cost, i.e.,

ui(bi,b−i) = pi(b) − xi(b) · ci . (1)

We consider both the single group model problem (SGP) where each agent belongs to only one group, and the multiple 
group model problem (MGP) each agent may belong to multiple groups. Let Q j denote the total value of selected agents in 
group G j . Next, we formally define two problems.

Single Group Model Problem (SGP): Since each agent belongs to only one group, we have |G(si)| = 1. Then, we have 
Q j = ∑

si∈G j
xi vi .

Multiple Group Model Problem (MGP): In this model, an individual agent may belong to multiple groups, i.e., 1 ≤
|G(si)| ≤ m. Depending on whether each selected agent can be counted into all groups, we further consider two cases: 
the Single Counting (MGP-SC) case where a selected agent is counted just once in one of the groups she belongs to, and 
5
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Fig. 1. Examples for the problem model.

the Multiple Counting (MGP-MC) case where a selected agent is counted in all groups she belongs to. For example, when 
forming a committee, the agent selected can only represent one of the groups to which she belongs, or when she is selected, 
all the groups to which the agent belongs are happy.

(1) MGP-SC: Each selected agent is only included in the selected agents of the group she is matched to. Let xij = 1
indicate that agent si is matched to group G j ∈ G(si), otherwise, xij = 0. We also have xi = ∑

j:G j∈G(si)
xij ≤ 1 where xij ∈

{0, 1}, ∀1 ≤ i ≤ n. Thus, we have Q j = ∑
si∈G j

xi j vi . Notice that the allocation rule of the mechanism is now defined over xij

to additionally include matching a selected agent to one of their groups. We will use this allocation rule when the context 
is clear.

(2) MGP-MC: Each selected agent is counted in all groups she belongs to. Thus, we have Q j = ∑
si∈G j

xi vi .

To obtain a proportion-representative selection of agents, we define the selection ratio of group G j as Q j∑
si∈G j

vi
, represent-

ing the ratio between the total value of selected agents and the total value of agents in group G j .

Example 1. We now use the example in Fig. 1 to further explain our model. As shown in Fig. 1(a), we consider the SGP 
problem in which there are two groups: group G1 contains students aged 20 to 30 and Group G2 contains students aged 
30 to 40. Specifically, we have G1 = {s1, s2, s3}, G2 = {s4, s5, s6, s7}. We use rectangles and circles to denote groups and 
students, respectively. Numbers below circles are students’ values, and there exists a line between a student and a group 
if such a student belongs to this group. Each student can only belong to one age group, i.e., each student has one line 
connected to a group. Suppose we have chosen student s1 from group G1, i.e., x1 = 1 and the total value of the chosen 
student in group G1 is Q 1 = 4, then the selection ratio of G1 is 4

4+9+6 = 4
19 . If we select one more student s2, i.e., x1 =

1, x2 = 1 and Q 1 = 4 + 9 = 13, then the selection ratio of G1 will be 13
19 . In Fig. 1(b), we construct an instance of the 

MGP problem with two groups: student group G1 contains all students and age group G2 contains students aged 15 to 20. 
Students may belong to multiple groups (e.g., student s2 aged 18 belongs to group G1 and G2 at the same time). Specifically, 
G1 = {s1, s2, s3, s4, s6}, G2 = {s2, s4, s5, s6, s7}. Suppose that we have chosen students s1, s2, s5, s6, s7. In the single counting 
case, each chosen student can only represent one of the groups she belongs to, e.g., in Fig. 1(b), the chosen students s2, s6
represent student group G1 and G2, i.e., x21 = 1, x22 = 0 and x61 = 0, x62 = 1, respectively. Then, the selection ratio of G1
and G2 are 4+9

4+9+6+8+2 = 13
29 and 6+2+5

9+8+6+2+5 = 13
30 , respectively. In the multiple counting case, each chosen student can 

represent all groups she belongs to. Thus, the selection ratio of G1 and G2 are 4+9+2
4+9+6+8+2 = 15

29 and 6+2+5+9
9+8+6+2+5 = 22

30 .

3.3. Our proportion-representative objective and goal

Given the above models, we aim to maximize the minimum selection ratio of groups, i.e.,

max min
1≤ j≤m

Q j∑
si∈G j

vi
,

when designing budget-feasible proportion-representative mechanisms.3 This objective is based on a well-studied notion of 
proportional representation (e.g., the electoral system requires the minimum vote proportion which is the ratio between the 
number of voters and population in each group for representation [24,25], specifying an exact allocation of votes to different 
groups proportionally [26] and maximizing the minimum diversity fairness among different groups [27,28]). Moreover, we 
want the designed proportion-representative mechanism M to satisfy the following properties:

• Budget-feasibility. The total payment of the planner does not exceed her budget B , i.e., 
∑

1≤i≤n pi(b) ≤ B .
• Individual rationality. The utility of each agent si is non-negative, i.e., ui(bi, b−i) ≥ 0 for any b.
• Truthfulness. Each agent achieves the maximum utility by bidding her real cost, i.e., ui(ci, b−i) ≥ ui(bi, b−i) for any bi .

3 We refer to mechanisms that aim to maximize the minimum selection ratio of groups as proportion-representative mechanisms.
6
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Fig. 2. An example where the optimal solution is manipulable.

• Computational efficiency. The output of the mechanism can be computed in polynomial time with respect to the 
number of agents and groups.

• Approximation. Let ALG(I) be the minimum selection ratio among groups of the proposed mechanism M on input 
instance I . We compare the output of the mechanism with the minimum selection ratio of the optimal solution where 
agents’ costs are known in advance. Formally, the optimal solution can be formulated as the solution of the following 
integer program,

max min
1≤ j≤m

Q j∑
si∈G j

vi

s.t. xi ∈ {0,1},∀i ≤ n∑
i≤n

ci · xi ≤ B

(2)

For the MGP-SC case, the above integer program can be modified to include variables that are defined over group (i.e., 
xij ) and constraints that enforce single counting (i.e., 

∑
j:G j∈G(si)

xij ≤ 1). The Q j terms are defined accordingly as in 
the above subsections for different models. We say that a mechanism is β-approximate if ALG(I) ≥ 1

β
O P T (I) for any 

instance I .

Notice that, in the above properties, we are interested in mechanisms that approximately optimize the objective because 
an optimal solution cannot induce truthfulness in general. Below, we provide such an example. As shown in Fig. 2, we 
construct an instance where there are two groups G1 = {s1, s2, s3} and G2 = {s4, s5, s6, s7} with costs {1, 2, 3} and {2, 3, 4, 5}, 
respectively. The planner has a budget 8.5. The optimal solution will choose agent s1, s2, s4, s5 and pay the chosen agent 
reported cost. Then, if agent s1 reported cost 1.5, then she will still be selected and achieve 1.5 payment which is higher 
than 1. Therefore, if we run the optimal solution, agents have incentives to report false costs to increase their utilities.

4. Homogeneous agent setting

We first consider homogeneous agents who have identical values, i.e., vi = 1, ∀1 ≤ i ≤ n. Then the selection ratio in each 
group reduces to the ratio between the number of selected agents and the number of agents in this group. In Subsection 4.1
and Subsection 4.2, we develop mechanisms for the single group models and multiple group models (with single counting 
and multiple counting). When developing these mechanisms, we consider ideas from the standard budget-feasible mecha-
nism literature. More specifically, the standard approach for designing budget-feasible mechanisms has leveraged a greedy 
approach to select agents based on their value-to-cost ratios. However, this approach cannot be used to achieve proportional 
representations directly as the approach does not consider groups. As our initial starting point, we investigate whether a 
similar greedy approach can work for our setting. It turns out that we can design new mechanisms with appropriate selec-
tion and payment schemes for each group using a greedy approach (along with other techniques such as integer program 
and max-min flow in different models/settings). The proposed (new greedy) mechanisms can (approximately) achieve the 
objective of proportional representations while guaranteeing truthfulness and budget-feasibility.

4.1. Mechanism for the single group model

In this section, we start with the single group model and introduce a Budget-feasible Proportion-representative mecha-
nism for the Single Group model (BPSG).

The main idea of Mechanism BPSG is as follows. We first generate a virtual ratio set which contains all possible selection 
ratios for each group when selecting a different number of agents from this group. In order to maximize the minimum 
selection ratio among all groups within the budget constraint, we find all feasible virtual ratios which ensure that the 
selection ratio for each group does not fall below that ratio and the current total payment (based on the ratio) does not 
exceed the budget. Specifically, the payments for the selected agents depend on the bids of agents after the last selected 
7
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agent in each group, and thus the ratio which results in selecting all agents from some group will not be feasible. Among 
all these feasible virtual ratios, we use the maximum one as the final selection ratio for all groups.

The detail of Mechanism BPSG is shown in Algorithm 1. In order to distinguish the agents belonging to different groups, 
we use b j

i to denote the i-th agent’s (agent s j
i ) bid in group G j (i.e., we sort all agents in the same group G j:1≤ j≤m in the 

weakly increasing order of their bids, i.e., b j
1 ≤ b j

2 ≤ · · · ≤ b j
n j

). Denote by p j
i the payment for agent s j

i . We then generate a 
virtual ratio set R which consists of possible selection ratios among all groups, i.e.,

R = ∪0≤i≤n j,1≤ j≤m

{
i

n j

}
, (3)

and sort all ratios in the weakly increasing order of their values, where γl is the l-th element in R, i.e., γ1 < γ2 < · · · <

γl < · · · < γ|R| . Denote by r f (final base selection ratio) the minimum selection ratio among groups in the solution that the 
mechanism selects.

To find the final base selection ratio, we iteratively consider ratios in R starting with the first ratio γ1.4 Suppose that we 
are now considering ratio γl for l > 1. Let I j(γl) denote the minimum number of agents which ensures that the selection 
ratio in group G j is at least γl , and we thus have I j(γl) = �γl · n j
. Specifically, since Mechanism BPSG decides the payment 
for each chosen agent as the lowest bid of non-selected agents in each group, BPSG will select up to n j − 1 agents from 
group G j to ensure that we have at least one non-selected agent in this group. Thus, when trying ratio γl , BPSG will 
terminate and output γl−1 as the final base selection ratio if there exists group G j with I j(γl) = n j (line 6). If we have 
I j(γl) < n j, ∀1 ≤ j ≤ m, we compute the current payment for each of the first I j(γl) agents in group G j as the bid of agent 
s j

I j(γl)+1, i.e., p j
i = b j

I j(γl)+1, ∀1 ≤ i ≤ I j(γl). Thus, when all groups have a selection ratio of at least γl , the total payment, 
denoted by Pγl , is

Pγl =
∑

1≤ j≤m

I j(γl) · b j
I j(γl)+1. (4)

It is easy to see that Pγl is increasing with γl . If Pγl ≤ B , we continue to try the next ratio γl+1. Otherwise, the final base 
selection ratio is r f = γl−1.

Once we decide the final base selection ratio, we then determine the final selected agents and corresponding payments. 
Let k j denote the number of selected agents in group G j , i.e., k j = I j(r f ) = Q j . In each group G j , the first k j agents are 
selected, i.e., s j

i ∈ S w , ∀1 ≤ i ≤ k j , and we have k j < n j . Then we have

p j
i =

{
b j

k j+1, i f s j
i ∈ S w

0, otherwise.
(5)

Example 2 (A running example of Mechanism BPSG). Suppose there are nine agents who can be divided into two groups 
G1 and G2. Group G1 has four agents G1 = {s1

1, s
1
2, s

1
3, s

1
4} with bids {1, 1.5, 3, 4} and group G2 has five agents 

G2 = {s2
1, s

2
2, s

2
3, s

2
4, s

2
5} with bids {0.5, 1.5, 2, 3, 5}. Thus, we have n1 = 4 and n2 = 5. The virtual ratio set is R =

{0, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 1}. The planner has a budget B = 10. We now try virtual ratios by starting from the 
first non-zero ratio 0.2:

(1) Try ratio 0.2: We have I1(0.2) = 1 and I2(0.2) = 1. Thus, we will select s1
1 from G1 and pay her 1.5, and select s2

1
from G2 and pay her 1.5. Then, the total payment is 3 < B = 10, and we will try the next ratio of 0.25.

(2) Try ratio 0.25: We have I1(0.25) = 1 and I2(0.25) = 2. Thus, we will select s1
1 from G1 and pay her 1.5, and select 

s2
1, s

2
2 from G2 and pay each of them 2. Then, the total payment is 5.5 < 10, and we will try the next ratio of 0.4.

(3) Try ratio 0.4: We have I1(0.4) = 2 and I2(0.4) = 2. Thus, we will select s1
1, s

1
2 from G1 and pay each of them 3, and 

select s2
1, s

2
2 from G2 and pay each of them 2. Then, the total payment is 10 = B , and we will try the next ratio of 0.5.

(4) Try ratio 0.5: We have I1(0.5) = 2 and I2(0.5) = 3. Thus, we will select s1
1, s

1
2 from G1 and pay each of them 3, and 

select s2
1, s

2
2, s

2
3 from G2 and pay each of them 3. Then, the total payment is 15 > B = 10.

Then, Mechanism BPSG terminates with the final base selection ratio 0.4. The selected agent set is S w = {s1
1, s

1
2, s

2
1, s

2
2}

with payments p1
1 = 3, p1

2 = 3, p2
1 = 2, p2

2 = 2, while the payments for the unselected agents are zero.

Next, we analyze the performance of Mechanism BPSG. We first provide a well-known Myerson’s characterization for 
truthful mechanisms in the single parameter domain which we will rely on to show the truthfulness of the proposed 
mechanisms.

4 The first virtual ratio in R is 0 and note that at this ratio, we select no agents and pay each agent zero.
8
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Algorithm 1: Mechanism BPSG(B , b, S , G).
Input: B , b, S , G .
Output: P , S w

1 P ← 0, S w ← ∅;

2 Sort agents in G j(∀1 ≤ j ≤ m), in the weakly increasing order of their bids b j
1 ≤ b j

2 ≤ · · · ≤ b j
n j

and generate the virtual ratio set R with value 
sorted and indexed by γl ’s;

3 // Determine the final base selection ratio;
4 for 1 ≤ l ≤ |R| do
5 Compute I j(γl) = �γl · n j
 for any 1 ≤ j ≤ m;
6 if I j(γl) < n j , ∀1 ≤ j ≤ m then
7 Compute the payment Pγl according to (4);
8 if Pγl ≤ B then
9 l ← l + 1;

10 else
11 break;
12 end
13 else
14 break;
15 end
16 end
17 r f ← γl−1;
18 // Agent selection and payment scheme;

19 Add agent s j
i (∀1 ≤ j ≤ m) with 1 ≤ i ≤ k j = I j(r f ) into the selected agent set S w ;

20 Decide the payments to agents according to (42);
21 return P , S w

Theorem 1. (Monotone Theorem, [59]) In the single parameter domains,5 a mechanism M = (X, P ) guarantees sellers’ truthfulness 
if and only if:

(1) X is monotone: ∀si ∈ S, if bi ≤ ci , then xi(ci, c−i) = 1 implies xi(bi, c−i) = 1 for every c−i ;
(2) winners are paid threshold payments: the payment to each winning bidder is the critical value inf{ci : xi(ci, c−i) = 0}.

The above theorem shows that truthful mechanisms satisfy monotonicity and agents are paid the threshold payments. 
Monotonicity means that when the selected agent reports a lower cost, she will still be selected. Threshold payments 
guarantee that if an agent reports her cost higher than the threshold payment, this agent will not be selected. We prove 
the truthfulness of Mechanism BPSG by leveraging the theorem above. Without loss of generality, we now assume that the 
final base selection ratio r f = γl is the l-th element in virtual set R.

Theorem 2. Mechanism BPSG guarantees truthfulness.

Proof. Note that the virtual set R is generated by the number of agents in each group, which will not change when any 
agent bids any false cost. Recall that, in group G j , agent s j

i is the i-th agent and the last selected agent is s j
k j

where k j < n j . 

Let O j denote the order of agents in group G j , i.e., O j = 〈s j
1, s

j
2, ..., s

j
n j

〉. In addition, the payment to each selected agent 
s j

i (∀1 ≤ i ≤ k j) in group G j is b j
k j+1 and all other agents will receive a payment of zero. Since the final base selection ratio 

is r f = γl , we have

Pγl =
∑

1≤h≤m

kh · bh
kh+1 ≤ B. (6)

Let k̂ j denote the number of selected agents in group G j when the selection ratio is at least γl+1, i.e., k̂ j = I j(γl+1). 
Depending on the final base selection ratio determined in Mechanism BPSG, we consider the following two cases:

Case 1: There exists no group G j in which all its agents are selected when considering γl+1 , i.e., k̂ j = I j(γl+1) < n j, ∀1 ≤
j ≤ m. As γl+1 is not selected by the mechanism, we thus have

Pγl+1 =
∑

1≤h≤m

k̂h · bh
k̂h+1

> B (7)

since the final base selection ratio is r f = γl . Additionally, it is clear that

5 The single parameter setting means that each agent only holds one type of private information. In our model, it is easy to see that each agent has only 
one kind of private information, that is, the private cost.
9
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Fig. 3. An example of a selected agent s j
i bidding a higher bid for the proof of Theorem 2. (For interpretation of the colors in the figure(s), the reader is 

referred to the web version of this article.)

γl ≤ k j

n j
<

k j + 1

n j
,∀1 ≤ j ≤ m. (8)

According to the generation of virtual set R in (3), we must have k j+1
n j

∈ R for each j, and then γl+1 ≤ k j+1
n j

since γl+1 =
minl<h≤|R| γh is the next ratio after γl . Thus, we have

k̂ j = I j(γl+1) = �γl+1 · n j
 ≤ k j + 1 (9)

and

b j

k̂ j+1
≤ b j

min{n j ,k j+2}. (10)

We next introduce new notations after agent s j
i reports a false cost when fixing the costs of the remaining agents. Let 

r′
f , k′

j and O ′
j denote the new final base selection ratio, the number of selected agents in group G j , and the new order of 

agents, respectively.
Monotonicity: For any selected agent s j

i in group G j , i.e., 1 ≤ i ≤ k j , if she reports a lower cost b j
i′ where b j

i′ < b j
i ≤ b j

k j+1, 
it is easy to see that the final base selection ratio is still γl , and she will still be selected. Therefore, Mechanism BPSG is 
monotonic.

Threshold payments: We consider two cases: (1) If agent s j
i with 1 ≤ i ≤ k j reports a cost b j

i′ which is b j
i′ > b j

n j
≥ b j

k j+1, 
she is the last agent in the new order O ′

j , and will never be selected since Mechanism BPSG never selects all agents in 

group G j for each j. (2) As shown in Fig. 3, assume that agent s j
i with 1 ≤ i ≤ k j reports a cost b j

i′ which is b j
i′ ∈ (b j

k j+1, b
j
n j

], 
and thus changes her position to that of s j

i′ marked by the red circle, i.e., the new order of agents in group G j is

O ′
j = 〈s j

1, s j
2, ..., s j

i−1, s j
i+1, ..., s j

k j+1, ..., s j
i′ , ..., s j

n j
〉 (11)

while the original order of agents is O j = 〈s j
1, s

j
2, ..., s

j
i , s

j
i+1, ..., s

j
k j+1..., s

j
n j

〉. Denote by O ′
j(i′) the number of agents from s j

1

to s j
i′ in (11). If she is not selected after bidding such a false cost, her utility is zero. If she is still a selected agent, agents 

from s j
1 to s j

i′ in order (11) should be selected, and we have O ′
j(i′) ≥ k j + 1. Due to �r f · n j
 = k j when s j

i reports her real 
cost, the new final base selection ratio r′

f must satisfy �r′
f · n j
 ≥ O ′

j(i′) ≥ k j + 1 ≥ �γl+1 · n j
 due to (9) which implies 
r′

f ≥ γl+1. Thus, under ratio r′
f , the mechanism will select the first k′

h = �r′
f · nh
 ≥ �γl+1 · nh
 = k̂h agents from group Gh

for h ≤ m and h �= j, and at least O ′
j(i′) agents from group G j . Let s j

i′+1 denote the agent after s j
i′ in group G j . Then, the 

payment under ratio r′
f is

Pr′
f
≥ O ′

j(i′) · b j
i′+1 +

∑
1≤h≤m,h �= j

k′
h · bh

k′
h+1

≥ (k j + 1) · b j

k̂ j+1
+

∑
1≤h≤m,h �= j

k̂h · bh
k̂h+1

≥
∑

1≤h≤m

k̂h · bh
k̂h+1

> B

(12)

There are three reasons for the second inequality in (12): (i) O ′
j(i′) ≥ k j + 1, (ii) Since we have b j

i′ > b j
k j+1, we have 

i′ + 1 ≥ k j + 2. Then we have b j
i′+1 ≥ b j

k̂ j+1
due to b j

i′+1 ≥ b j
k j+2 and Eq. (10), (iii) k′

h ≥ k̂h . The third and the last equality in 

(12) is due to (10) and (7), respectively. Thus, the total payment is higher than budget B if s j
i is selected after bidding false 

cost. Then, by the above contradiction, s j
i will not be selected and have zero utility. Therefore, the value b j

k j+1 is the critical 
value and the selected agents are paid threshold payments.
10



X. Liu, H. Chan, M. Li et al. Artificial Intelligence 323 (2023) 103975
Case 2: There exists a group G j in which all its agents are selected when considering γl+1, i.e., ∃ j, 1 ≤ j ≤ m, ̂k j =
I j(γl+1) = n j . As r f = γl is the final base selection ratio, Mechanism BPSG will not select all agents from G j with ratio 
r f , i.e., �r f · n j
 ≤ n j − 1. If �r f · n j
 < n j − 1, we have �γl+1 · n j
 ≤ n j − 1 since γl+1 is the minimum virtual ratio in R, 
which implies I j(γl+1) ≤ n j − 1, contradicting to I j(γl+1) = n j . Thus, we have

r f · n j = γl · n j = n j − 1, (13)

and the payment for the selected agent in group G j is b j
n j

.

Monotonicity: If the selected agent s j
i in group G j reports a lower cost b j

i′ < b j
i ≤ b j

n j
, it is obvious that the final base 

selection ratio is sill γl , and she will still be selected. Thus, Mechanism BPSG is monotonic.
Threshold payments: Note that the payment for the selected agent s j

i in group G j is b j
n j

due to (13). If she reports a cost 
higher than b j

n j
, she will be the last agent and never be selected. In addition, for the selected agent sh

i in group Gh:h �= j , the 
payment is bh

Ih(γl)+1. If she reports a cost higher than bh
Ih(γl)+1, she will never be selected unless the new final base selection 

ratio is higher than r f = γl , which results in that there will exist a group G j in which all its agents are selected, leading to 
the contradiction.

Therefore, Mechanism BPSG guarantees truthfulness by Theorem 1. �
Then, we show that Mechanism BPSG guarantees individual rationality, budget-feasibility, and computational efficiency.

Theorem 3. Mechanism BPSG guarantees individual rationality, budget feasibility, and computational efficiency.

Proof. 1) Individual rationality: Since Mechanism BPSG is truthful, we have b j
i = c j

i where c j
i is the true cost of agent s j

i . 
For each selected agent s j

i , we have b j
i ≤ b j

k j+1 where i ≤ k j in group G j , and her payment is b j
k j+1 which implies that her 

utility is b j
k j+1 − c j

i = b j
k j+1 − b j

i ≥ 0 which is non-negative. 2) Budget-feasibility: After determining the selection ratio, it 

is easy to see that the total payment is 
∑

1≤ j≤m k j · b j
k j+1 ≤ B which is no greater than the budget B . 3) Computational 

efficiency: The running time of Mechanism BPSG is dominated by the sorting (line 2) and the loop in determining the final 
base selection ratio (line 4-15) as shown in Algorithm 1. Therefore, the total computational complexity is O (n log n). This 
completes the proof. �

Next, we introduce a useful property of Mechanism BPSG. Let r j(γl) denote the selection ratio of group G j when the 
final base selection ratio is γl (after selecting k j agents), i.e., r j(γl) = k j

n j
. We use rmax and rmin to denote the maximum 

and minimum selection ratios among groups when the final base selection ratio is γl , i.e., rmax = max1≤ j≤m{r j(γl)} and 
rmin = min1≤ j≤m{r j(γl)}. Specifically, we have rmin = γl = r f since there must exist at least one group G j whose selection 
ratio is r j(γl) = γl due to the generation of R in (3). Denote by α the ratio between nmax and nmin , i.e., α = nmax

nmin
.

Lemma 1. Mechanism BPSG has the following two properties:

1. γh+1 − γh ≤ 1
nmax

, ∀1 ≤ h ≤ |R| − 1.

2. rmax − rmin < 1
nmin

.

Proof. (1) Assume that group G j has the maximum total number of agents, i.e., n j = nmax . There must exist an integer i, 
0 ≤ i ≤ n j − 1, such that i

n j
≤ γh < i+1

n j
, ∀h, 1 ≤ h ≤ |R| due to the generation of the virtual ratio set R. Since the next 

virtual ratio γh+1 is the minimum virtual ratio after γh , we thus have

γh+1 − γh ≤ i + 1

n j
− i

n j
= 1

n j
= 1

nmax
. (14)

(2) Assume that rmax and rmin are the selection ratios in group G j1 and G j2 , respectively. We have rmax = k j1
n j1

≥ γl , and 
k j1 −1

n j1
< γl = rmin since the number of selected agents in G j1 is k j1 rather than k j1 − 1. Then, we have

rmax − rmin <
k j1

n j1

− k j1 − 1

n j1

≤ 1

nmin
. � (15)

Given the above lemma, we consider the approximation guarantee of Mechanism BPSG. Let ALG and O P T denote the 
minimum selection ratio of BPSG and the optimal solution, respectively. Our analysis considers two separate cases. In the 
11
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Fig. 4. An example for the proof of Theorem 4.

first case when BPSG is able to select at least one agent from each group, we show that BPSG obtains an approximation 
ratio that depends on the ratio between the maximum and minimum number of agents among groups. In fact, the ratio 
is asymptomatically tight as we will show later in Theorem 5. For the second case, where Mechanism BPSG cannot select 
at least one agent from each group, we show that no budget-feasible proportion-representative mechanisms can output a 
better solution than BPSG.

Theorem 4. (1) Mechanism BPSG achieves (3 +α)-approximation ratio if BPSG selects at least one agent from each group (i.e., ALG ≥
1

nmax
) where α = nmax

nmin
.

(2) No budget-feasible proportion-representative mechanism M, that guarantees truthfulness and individual rationality, can 
achieve ALGM ≥ θ for any θ > 0 where ALGM is the solution of M if Mechanism BPSG cannot select at least one agent from 
each group, i.e., ALG = 0.

Proof. (1) As shown in Fig. 4, we use circles to indicate the agents, and we sort agents in the weakly increasing order of 
their bids in each group, e.g., b j1

1 ≤ b j1
2 ≤ · · · ≤ b j1

n j1
in group G j1 . The distance between any two neighboring agents s j

i , s
j
i+1

in group G j is the marginal gain of the selection ratio after adding s j
i+1 into the selected agent set where the first i agents 

have been selected. For example, the distance between s j1
1 and s j1

2 is 1
n j1

.

Suppose that the final base selection ratio is the l-th element in the virtual ratio set R, and we have r f = γl = ALG
and k j = I j(γl) is the number of selected agents in group G j . We have n j ≥ 2, ∀1 ≤ j ≤ m since BFSG can select at least 
one agent from each group by the design of the mechanism. Depending on the conditions at the termination of BPSG, we 
consider the following two cases:

Case 1: There exists a group G j in which we select all agents when considering γl+1, i.e., ∃ j ≤ m, I j(γl+1) = n j . We have 
γl ·n j = n j −1 according to (13). Thus, we have ALG ≥ min1≤ j≤m{n j−1

n j
} and O P T ≤ 1, which implies O P T

ALG ≤ 1

min1≤ j≤m{ n j−1
n j

}
≤

2.

Case 2: There exists no group G j in which all its agents are selected when considering γl+1, i.e., I j(γl+1) < n j, ∀1 ≤ j ≤ m.
Let G ′ denote the set of all groups that can choose exactly r f · n j = k j agents making the selection ratio in group G j equal 
to r f , ∀G j ∈ G ′ . As shown in Fig. 4, G j1 is one of the groups in G ′ . Thus, we have r j(r f ) > r f , ∀G j /∈ G ′ . In addition, the next 
virtual ratio γl+1 must satisfy

γl+1 = min

{
min

G j /∈G ′{r j(r f )}, min
G j∈G ′

{
k j + 1

n j

}}
. (16)

According to the payment scheme of Mechanism BPSG, we have

Pγl =
∑

1≤ j≤m

k j · b j
k j+1 ≤ B. (17)

Depending on whether the next ratio γl+1 is generated from a group in G ′ or not, we consider the following two subcases:

Subcase 1: Assume that the virtual ratio γl+1 is generated from group G j2 /∈ G ′ where j1 �= j2 as shown in Fig. 4, i.e.,

γl+1 = r j2(r f ) = min

{
min

G /∈G ′{r j(r f )}, min
G ∈G ′

{
k j + 1

n

}}
. (18)
j j j

12
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Thus, we have r j(r f ) ≥ r j2 (r f ) = γl+1, ∀G j /∈ G ′ , and

k j = �r f · n j
 ≤ �γl+1 · n j
 ≤ �r j(r f ) · n j
 = k j

which means the number of selected agents with ratio γl+1 in group G j where G j /∈ G ′ does not change and should be 
k j . For the group G j in G ′ , the number of selected agents will be k j + 1 since k j

n j
= γl and k j+1

n j
≥ γl+1 due to (18). Thus, 

we have k j + 1 = I j(γl+1) ≤ n j − 1. Since γl is the final base selection ratio, the total payment with ratio γl+1 exceeds the 
budget, i.e.,

Pγl+1 =
∑

G j∈G ′
(k j + 1) · b j

k j+2 +
∑

G j /∈G ′
k j · b j

k j+1 > B. (19)

We divide agents in S into two parts: S̃ = {s j
i | i ≤ k j, ∀G j /∈ G ′} ∪ {s j

i | i ≤ k j + 1, ∀G j ∈ G ′} and S \ S̃ for further analysis 
to bound the minimum selection ratio among groups in each part.

For set S̃: The optimal solution can select all agents in S̃ with cost zero in the best case and spend the budget on the 
remaining agents in S \ S̃ . Since O P T selects k j agents from each group G j not in G ′ , and k j + 1 agents from each group 
G j in G ′ , we have

max
G j /∈G ′

k j

n j
= max

G j /∈G ′ r j(r f ) = rmax

and

max
G j∈G ′

k j + 1

n j
= r f + max

G j∈G ′
1

n j
= rmin + 1

nmin
.

Thus, after choosing all agents in S̃ , the maximum selection ratio among all groups is max{rmax, rmin + 1
nmin

} ≤ rmin + 1
nmin

according to Lemma 1, and the minimum selection ratio is γl+1 due to (18).
For set S \ S̃: For group G j where G j /∈ G ′ , the bids of agents after sk j are at least b j

k j+1, while the bids of agents after 

b j
k j+1 are at least b j

k j+2 in group G j ∈ G ′ . With budget B , the optimal solution can select k j agents from the remaining 

agents after sk j with costs b j
k j+1 from group G j for any G j /∈ G ′ , and k j + 1 agents with costs b j

k j+2 from the group G j ∈ G ′

due to Eq. (19). According to the analysis for the set S̃ , the minimum selection ratio among groups by selecting these 
numbers of agents is γl+1 and the maximum selection ratio is rmin + 1

nmin
. Otherwise, O P T should select more agents to 

achieve a higher base selection ratio which will exceed the budget.
In set S̃ and S \ S̃ , we know that the maximum and minimum selection ratios in these two parts for OPT are rmin + 1

nmin

and γl+1, respectively. By combining these two parts, the minimum selection ratio among groups for OPT is no greater than 
the sum of rmin + 1

nmin
and γl+1, i.e., O P T ≤ rmin + 1

nmin
+ γl+1 ≤ 2r f + 1

nmax
+ 1

nmin
where the last inequality is due to the 

first property in Lemma 1.

Subcase 2: Assume that the virtual ratio γl+1 is generated from group G j2 ∈ G ′ , i.e.,

γl+1 = k j2 + 1

n j2

= min

{
min

G j /∈G ′{r j(r f )}, min
G j∈G ′

{
k j + 1

n j

}}
.

Using similar arguments in the Subcase 1, we have O P T ≤ 2r f + 1
nmax

+ 1
nmin

.

Thus, we have O P T ≤ 2ALG + 1
nmin

+ 1
nmax

. Specifically, when Mechanism BPSG can select at least one agent from each 
group, i.e., ALG ≥ 1

nmax
, we have O P T

ALG ≤ 3 + α which means that Mechanism BPSG achieves (3 + α)-approximation ratio.
(2) Assume that there are m groups, and we sort agents in weakly increasing order of their bids in each group. Suppose 

that the budget of the planner is B . According to Mechanism BPSG, there are two cases as follows due to ALG = 0:

Case i) The total payment is 
∑

1≤ j≤m b j
2 where b j

2 denotes the second lowest bid in group G j when trying the first 
non-zero virtual ratio in R, that is, choosing the first agent from each group, and we have 

∑
1≤ j≤m b j

2 > B due to ALG = 0
which implies that we cannot select any agent from each group. Assume for the purpose of contradiction that there exists 
a budget-feasible proportion-representative mechanism M with better performance ALGM ≥ θ . In this case, Mechanism 
M must select at least one agent from each group. Myerson’s characterization [59] implies that the threshold payment for 
the first agent in group G j should be at least b j

2, and thus the total payment now is 
∑

1≤ j≤m b j
2 > B . By truthfulness and 

budget-feasibility, M cannot select one agent from each group using that payment which contradicts ALGM ≥ θ .

Case ii) There exists a group G j which contains only one agent, and we will select all agents from G j when trying the 
first non-zero virtual ratio which implies that we cannot select at least one agent from each group. Assume that we have 
ALGM ≥ θ . In this case, Mechanism M must always select at least one agent from each group. Thus, the payment for the 
13
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Algorithm 2: Mechanism BPMG-S(B , b, S , G).
Input: B , b, S , G .
Output: P , S w

1 P ← 0, S w ← ∅;
2 Assign each agent si a weight wi = 2zi where zi ∈ N+ is an arbitrary integer such that no two agents have the same weight, i.e., zi �= zi′ for any 

i �= i′;
3 Sort all agents in weakly increasing order of their bids bi , i.e., b1 ≤ b2 ≤ · · · ≤ bn;
4 // Determine the candidate agent set;
5 k ← 0;
6 for 1 ≤ i ≤ n do
7 Compute r(si) according to (20);
8 F (si) ← ∑

1≤ j≤m�r(si) · n j
;

9 if bi · F (si) ≤ B then
10 k ← k + 1;
11 else
12 break;
13 end
14 end
15 // Agent selection and payment scheme;
16 X, S w ← Agent Select(Sk);

17 The payment for si ∈ S w is pi = min{ B
F (sk)

, bk+1};

agent in G j can be infinity by Myerson’s characterization [59] which violates budget-feasibility. Therefore, M also cannot 
select at least one agent from each group using that payment which contradicts ALGM ≥ θ . �

Next, we provide a lower bound for all budget-feasible proportion-representative mechanisms.

Theorem 5. No budget-feasible proportion-representative mechanism obtains an approximation ratio better than �(α).

Proof. Suppose that we have m groups. Group G1 has n1 agents with costs 0, B − ε, ..., B − ε , while group Gm has nm

agents, each with cost ε . Each remaining group G j(∀ j, 2 ≤ j ≤ m − 1) has n j agents with cost zero. Specifically, assume 
that n1 ≤ n2 ≤ · · · ≤ nm and B = 1

n1
nmε . Thus, we have nmin = n1 and nmax = nm . By Myerson’s characterization [59], the 

payment for the first agent in G1 is at least B − ε and for the first agent in Gm is at least ε to achieve truthfulness. Thus, 
by truthfulness and budget-feasibility, the solution of any budget-feasible proportion-representative mechanism is no better 
than 1

nm
since they can only select at most one agent each from G1 and Gm . However, the optimal solution is 1

n1
. Thus, no 

budget-feasible proportion-representative mechanism can achieve an approximation ratio better than nm
n1

= α. This finishes 
the proof. �

In particular, it is worth stating that this lower bound also applies to the multiple group model which we will consider 
in the next section. Furthermore, based on the instance in Theorem 5, we can directly obtain the lower bound for the 
approximation ratio of Mechanism BPSG, that is also α.

4.2. Mechanisms for multiple group models

In this section, we consider the multiple group model where each agent si might belong to multiple groups, i.e., 1 ≤
|G(si)| ≤ m. We distinguish two subcases according to whether the contribution of the agent is counted only once or not: 
single-counting case and multiple-counting case. In the single counting case, the selection ratio in one of the groups G(si), 
say G j , would increase by 1

n j
where n j = |G j| if si is selected and contributes to G j ; while in the multiple counting case, 

the selection ratios of all groups in G(si) would increase by 1
n j

for any G j ∈ G(si), once si is selected.

4.2.1. Single counting case
In this section, we introduce a Budget-feasible Proportion-representative mechanism for the Multiple Group model in

Single counting case, called BPMG-S.
Intuitively, the mechanism first considers the available agents under a given fixed payment. Given all agents who have 

bids lower than this payment, we can compute the solution that maximizes the minimum selection ratio among groups. 
This minimum ratio will increase as the given payment increases. We then try to find the payment which can maximize 
such a ratio and ensure budget-feasibility simultaneously.

In detail, we first sort all the agents in weakly increasing order of their bids b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn . Let xij = 1 indi-
cate that agent si is matched to group G j , otherwise, xij = 0. Agent si can only be matched to at most one group, i.e., ∑

1≤ j≤m xij ≤ 1, ∀1 ≤ i ≤ n. Denote by S(sh) = {si | 1 ≤ i ≤ h} the set containing agents before agent sh+1.
14
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Fig. 5. An example of a flow network under ratio rs .

Algorithm 3: Function AgentSelect(S , G , k).
Input: S , G , k.
Output: X, S w

1 X ← 0, S w ← ∅;
2 Compute the final allocation Xw(sk) according to (22);
3 X ← Xw (sk);
4 Add agent si(∀1 ≤ i ≤ n) into S w if ∑1≤ j≤m xij = 1;

Before introducing our mechanism, we first introduce an important component, an integer program formulation to com-
pute a matching under a given agent set S(sh), that maximizes the minimum selection ratio among groups while ignoring 
the costs and budget constraint, denoted by I L P (sh) as follows,

max min
1≤ j≤m

∑
1≤i≤h xi j

n j

s.t.,
∑

1≤ j≤m

xij ≤ 1,∀1 ≤ i ≤ h

xij ∈ {0,1},∀1 ≤ i ≤ h, G j ∈ G(Si)

xij = 0,∀1 ≤ i ≤ h, G j /∈ G(Si)

(20)

where the three conditions indicate that agents in S(sh) can only be matched to at most one of the groups they belong 
to. Notice that the optimal solution in (20) can be computed in polynomial time by constructing Max-Flow networks as 
follows. In detail, given an agent set S(sh), all possible selection ratios for group G j are in ∪y≤|S(sh)∩G j |{ y

n j
}. Thus, the 

optimal selection ratio in the solution of (20) must be one of the ratios in set R = ∪y≤|S(sh)∩G j |, j≤m{ y
n j

}. We say a ratio 
rs ∈ R is feasible if we can find a matching result ensuring that the selection ratio in each group is at least rs and satisfying 
all conditions in (20). To find the optimal solution, we take rs ∈ R as input and construct a flow network based on such a 
ratio. As shown in Fig. 5, we use blue, red and black circles to represent source node s/terminal node t , groups and agents, 
respectively. Specifically, there exists a directed edge from source s to each group G j , an edge from each G j to si if si ∈ G j , 
and from each agent si to terminal node t . Each edge from s to G j is assigned with a capacity �rs ·n j
, while the capacity of 
each directed edge from G j to s j and from si to t are all 1. If the maximum flow on this network equals to 

∑
1≤ j≤m�rs ·n j
, 

then rs is a feasible ratio. We can find the optimal solution in (20) by testing every possible input of rs and validating its 
feasibility, i.e., the maximum one among all feasible ratios is the desired optimal solution.

Let X(sh) denote the solution of I L P (sh), and r(sh) be the minimum selection ratio among groups under X(sh), i.e., 
r(sh) = min1≤ j≤m

∑
1≤i≤h xi j

n j
, xij ∈ X(sh). Denote by F (sh) the total number of agents under ratio r(sh), i.e.,

F (sh) =
∑

1≤ j≤m

�r(sh) · n j
. (21)

It is not hard to see that F (sh) ≤ |S(sh)|.
Candidate agent selection Before selecting agents, we first decide on a candidate agent set from which we finally select 
agents. We iteratively consider each agent’s bid starting from the first agent’s bid b1. Suppose that we are now trying 
agent si and calculate the value of F (si) by Eq. (21). If bi · F (si) ≤ B , we consider the next agent si+1, otherwise, we select 
agents from the previous i − 1 agents S(si−1). Assume that sk is the last agent who satisfies bk · F (sk) ≤ B which implies 
bk+1 · F (sk+1) > B . After determining the value k, we define agent set S(sk) = {si : i ≤ k} as the candidate agent set, where 
|S(sk)| ≥ F (sk) follows.
15
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Fig. 6. Running example of Mechanism BPMG-S.

Agent selection and payment scheme Now we select agents from the candidate agent set S(sk). At the beginning of the 
mechanism, we assign each agent si a weight wi = 2zi where zi ∈ N+ is an arbitrary integer such that no two agents have 
the same weight, i.e., zi �= zi′ for any i �= i′ . Then, we use the function Agent Select(S, G, k) to select F (sk) agents from S(sk). 
The detail of Agent Select(S, G, k) is shown in Algorithm 3. We try to find a minimum weight matching between agents and 
groups that can minimize the total weight of matched agents satisfying that each group G j has �r(sk) · n j
 matched agents 
from set S(sk) as follows,6 denoted by I L P w (sk),

min
∑

1≤i≤k

∑
1≤ j≤m

wi xij

s.t.,
∑

1≤ j≤m

xij ≤ 1,∀i ≤ k

∑
1≤i≤k

xi j = �r(sk) · n j
,∀1 ≤ j ≤ m

xij ∈ {0,1},∀i ≤ k, G j ∈ G(Si)

xij = 0,∀i ≤ k, G j /∈ G(Si).

(22)

Since we assign agents exponential weights, there is a unique matching result in (22). Let Xw(sk) denote the solution of 
I L P w(sk). If agent si:i≤k is matched to one of the groups, i.e., 

∑
1≤ j≤m xij = 1, then she is selected, i.e., si ∈ S w . The payment 

for each selected agent is pi = min{ B
F (sk)

, bk+1} while the payments for unselected agents are zero.7

Example 3. We now show a running example of Mechanism BPMG-S. As shown in Fig. 6, suppose there are seven agents 
and two groups G1, G2. Group G1 has five agents G1 = {s1, s2, s3, s4, s6} with bids {2, 4, 5, 5, 9} and group G2 has five agents 
G2 = {s2, s4, s5, s6, s7} with bids {4, 5, 6, 9, 10}. Thus, we have n1 = 5 and n2 = 5. The planner has a budget B = 30.

(1) Given agent set S(s2) = {s1, s2}: According to the optimal solution of Eq. (20), the minimum selection ratio among 
groups under S(s2) is 0.2, and we have F (S(s2)) = 2, where s1 is matched to group G1 and s2 is matched to group G2 by 
Eq. (22). And we have F (S(s2)) · b3 = 10 < B = 30. Thus, we will select s1, s2 and pay each of them min{ 30

2 , 5} = 5. Then, 
we will try agent set S(s3) = {s1, s2, s3}.

(2) Given agent set S(s3) = {s1, s2, s3}: According to the optimal solution of Eq. (20), the minimum selection ratio among 
groups under S(s3) is still 0.2, and we have F (S(s3)) = 2, where s1 is matched to group G1 and s2 is matched to group 
G2 by Eq. (22). And we have F (S(s3)) · b4 = 10 < B = 30. Thus, we will select s1, s2 and pay each of them min{ 30

2 , 5} = 5. 
Then, we will try agent set S(s4) = {s1, s2, s3, s4}.

(3) Given agent set S(s4) = {s1, s2, s3, s4}: According to the optimal solution of Eq. (20), the minimum selection ratio 
among groups under S(s4) is 0.4, and we have F (S(s4)) = 4, where s1, s3 is matched to group G1 and s2, s4 is matched 
to group G2 by Eq. (22). And we have F (S(s4)) · b5 = 24 < B = 30. Thus, we will select s1, s2, s3, s4 and pay each of them 
min{ 30

4 , 6} = 6. Then, we will try agent set S(s5) = {s1, s2, s3, s4, s5}.
(4) Given agent set S(s5) = {s1, s2, s3, s4, s5}: According to the optimal solution of Eq. (20), the minimum selection ratio 

among groups under S(s4) is 0.4, and we have F (S(s5)) = 4, where s1, s3 is matched to group G1 and s2, s4 is matched to 
group G2 by Eq. (22). And we have F (S(s5)) · b6 = 36 > B = 30.

Then, Mechanism BPMG-S terminates with the final base selection ratio 0.4. The selected agent set is S w = {s1, s2, s3, s4}
and each of them gets payment 6 while the payments for the unselected agents are zero.

Next, we analyze the performance of Mechanism BPMG-S.

6 This problem can be similarly solved in polynomial time by constructing Max-Flow Min-Cost networks.
7 The payment for each selected agent is B

F (s )
if k = n.
k
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Theorem 6. Mechanism BPMG-S guarantees individual rationality, budget-feasibility, and computational efficiency.

Proof. The proof for the first two properties is straightforward, and we will not go into detail. For computational efficiency, 
the running time of Mechanism BPMG-S is dominated by the loop in determining the candidate agent set (line 4-12) in 
Algorithm 2, and the agent selection. The complexity of solving the problem in (20) is O (mn3(n + m)) by using the Max-
Flow method [60] where n and m are the number of agents and the number of groups, respectively. When computing the 
candidate agent set, we try n agents, and thus the total complexity is O (mn4(n +m)). For the agent selection determination, 
the complexity of solving (22) is O (n(n + m) log n) by using the Min-Cost Max-Flow method [31]. Therefore, the total 
computational complexity is O (mn4(n + m)). �

We prove the truthfulness of Mechanism BPMG-S by showing that it satisfies Theorem 1.

Theorem 7. Mechanism BPMG-S guarantees truthfulness.

Proof. According to the definition of F (sk+1), it is obvious that F (sk+1) ≥ F (sk). Since sk is the last agent among candidate 
agents, we have,

bk · F (sk) ≤ B,bk+1 · F (sk+1) > B (23)

The payment for agent si ∈ S w is pi = min{ B
F (sk)

, bk+1}. Denote by O  = 〈s1, s2, ..., sk, ..., sn〉 the order of agents in weakly 
increasing order of their bids.

Monotonicity: For any agent si with i ≤ k, si is selected when bidding real cost ci . If si decreases her bid to b′
i < ci , 

agents before sk+1 will not change and the candidate agent set is still S(sk) due to (23). Thus, si will still be selected since 
the unique matching under the same agent set in the agent selection scheme by (22). Therefore, Mechanism BPMG-S is 
monotonic.

Threshold payments: For any selected agent si ∈ S w , her payment is pi = min{ B
F (sk)

, bk+1}. According to the relationship 
between B

F (sk)
and bk+1, we further consider two subcases:

• B
F (sk)

≤ bk+1: For agent si with i ≤ k and si ∈ S w , we have pi = B
F (sk)

and bi ≤ B
F (sk)

. If she bids a higher cost b′
i > pi (let 

si′ denote the agent after bidding a false cost), she will be after agent sk , and the new order now is

O ′ = 〈s1, ..., si−1, si+1, ..., sk, ..., si′ , ..., sn〉 (24)

Let S(sh)′ denote agents before sh (including herself) in the new sequence, and F (sh)′ denote the new total number of 
agents with ratio computed by (20) with input S(sh)′ . We have S(sk) ⊆ S(si′)′ which means F (si′ )′ ≥ F (sk). Thus, we 
must have b′

i · F (si′ )′ > pi · F (sk) = B which implies that agent si will not be selected, and her utility is zero. Therefore, 
the value B

F (sk)
is the critical value and the selected agents are paid threshold payments.

• bk+1 < B
F (sk)

: For agent si with i ≤ k and si ∈ S w , we have pi = bk+1. If she bids a higher cost b′
i > pi , it is easy to find 

that S(sk+1) ⊆ S(si′ )′ and F (si′ )′ > F (sk+1). Thus, we have b′
i · F (si′ )′ > bk+1 · F (sk+1) > B which implies that agent si

will not be selected. Therefore, the value bk+1 is the critical value and the selected agents are paid threshold payments.

Therefore, Mechanism BPMG-S guarantees truthfulness. �
Let O P Ts and ALGs denote the optimal solution and the solution of BPMG-S, respectively. We show that BPMG-S gen-

erally achieves an approximation ratio with respect to the size of groups when at least one agent is selected in each group, 
while there is a small gap between BPMG-S and any other budget-feasible proportion-representative mechanism when 
BPMG-S cannot select at least one agent from each group.

Theorem 8. (1) Mechanism BPMG-S achieves (mα(α + 2) + 1)-approximation ratio if BPMG-S can select at least one agent from each 
group (i.e., ALGs ≥ 1

nmax
) where α = nmax

nmin
.

(2) No budget-feasible proportion-representative mechanism M′, that guarantees truthfulness and individual rationality, can ob-
tain ALGM′ ≥ θ for any θ > 1

nmin
where ALGM′ is the solution of M′ if Mechanism BPMG-S cannot select at least one agent from 

each group, i.e., ALGs = 0.

Proof. (1) The bids of agents before sk+1 are no greater than bk+1 while the bids of agents after sk+1 are no lower than 
bk+1. According to the Mechanism BPMG-S, we have ALGs = r(sk). For the agents before sk+1, the optimal solution O P Ts

can select all these k agents with zero costs in the best case. Then, the minimum selection ratio among these agents is still 
r(sk).
17
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For the agents after sk , O P Ts can select at most F (sk+1) agents due to (23). For set S(sk), the maximum increase in 
the minimum selection ratio among all groups is max1≤ j≤m

1
n j

= 1
nmin

after adding agent sk+1 into S(sk), i.e., r(sk+1) ≤
r(sk) + 1

nmin
. Thus, we have

F (sk+1) =
∑

1≤ j≤m

�r(sk+1) · n j
 ≤
∑

1≤ j≤m

⌈(
r(sk) + 1

nmin

)
· n j

⌉
. (25)

In the best case, the maximum increase in the minimum selection ratio among all groups is F (sk+1)

nmin
, that is, adding F (sk+1)

agents to S(sk) and matching all F (sk+1) agents to the group with the minimum number of agents. It follows that

F (sk+1)

nmin
≤

∑
1≤ j≤m

(�r(sk) · n j + n j

nmin

)/nmin

≤
∑

1≤ j≤m

r(sk) · n j + n j
nmin

+ 1

nmin

≤ m ·
(

r(sk) · nmax

nmin
+ 1

nmin
+ nmax

n2
min

)

where the first inequality and the last inequality are due to (25) and n j ≤ nmax , respectively. Thus, we have O P Ts ≤ r(sk) +
F (sk+1)

nmin
≤ (m · nmax

nmin
+ 1) · ALGs + m · ( 1

nmin
+ nmax

n2
min

).

Additionally, when Mechanism BPMG-S selects at least one agent from each group, i.e., ALGs ≥ 1
nmax

, we have O P Ts
ALGs

≤

(m · nmax
nmin

+ 1) +
m·( 1

nmin
+ nmax

n2
min

)

ALGs
≤ mα(α + 2) + 1.

(2) Since sk is the last agent among candidates, we have F (sk) = 0 when ALGs = 0 and consider the following two cases:

• F (sk) = 0 (k = n): There is no feasible ratio in (20) with input S(sn), i.e., we cannot find a matching that allocates one 
agent to each group. Thus, it is obvious that no budget-feasible proportion-representative mechanism M′ can achieve 
ALGM′ ≥ θ for any θ > 0.

• F (sk) = 0 (k < n): We have r(sk) = 0, bk · F (sk) ≤ B , and bk+1 · F (sk+1) > B . For the set S(sk), the maximum increase 
in the minimum selection ratio among all groups is max1≤ j≤m

1
n j

= 1
nmin

, i.e., rsk+1 ≤ 1
nmin

after adding agent sk+1 into 
S(sk). For the agents before sk+1, Myerson’s characterization [59] implies that the threshold payment for these agents 
should be at least bk+1. For the agents after sk , we have bi ≥ bk+1, ∀i > k. Thus, by truthfulness and budget-feasibility, 
mechanism M can select at most F (sk+1) agents, which implies ALGM = r(sk+1) ≤ 1

nmin
.

This completes the proof. �
Next, we show that the lower bound of the approximation ratio for Mechanism BPMG-S is �(mα) as follows. As shown 

in Fig. 7, there are m groups, where group G j for j ≤ m − 1 has n j agents with costs 0, and group Gm has two agents 
with costs 0 while costs of the remaining agents are ε . Suppose that n1 = n2 = · · · = nm−1 > nm and α = n1

nm
. Let B =

(
∑

j≤m� 2
nm

·n j
 −1)ε . When trying agent set Sk , we have F (Sk) ·bk+1 = 0. Assume that F (Sk+1) ·ε = (
∑

j≤m� 2
nm

·n j
) ·ε > B . 
Then, we have ALGs = 1

nm
. However, for the optimal solution, O P Ts can obtain the first k + 1 agents with payment 0 and 

(
∑

j≤m� 2
nm

· n j
) − 1 agents under budget B . Thus, we have O P Ts ≥ 2
nm

+
2

nm
·n j
)−1
nm

≥ (m − 1) 2n1
n2

m
+ 3 1

nm
. Then, we have 

O P Ts
ALGs

≥ (m − 1)α + 3.

4.2.2. Multiple counting case
In this section, we consider the multiple counting case where the selection ratio of each group G j in G(si) can increase 

by 1
n j

for G j ∈ G(si) when si is selected. We propose a modified version of Mechanism BPMG-S, called BPMG-M.

In general, Mechanism BPMG-M applies the framework in BPMG-S. We first sort all the agents in weakly increasing order 
of their bids b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn . We then use an integer program formulation to compute a result given an agent set 
S(sh) = {si : i ≤ h}, that maximizes the minimum selection ratio among groups, denoted by I L Pm(sh) as follows,

max min
1≤ j≤m

∑
si∈G j

xi

n j

s.t., xi ∈ {0,1},∀1 ≤ i ≤ h

x = 0,∀i > h

(26)
i
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Fig. 7. Example for lower bound.

where the two conditions mean that we only consider agents in S(sh). Similar to that of (20), we can solve this problem 
by using the Max-Flow method [60]. Let Xm(sh) denote the solution of I L Pm(sh), and rm(sh) denote the minimum selection 
ratios under Xm(sh). We denote Fm(sh) as the total counted number of selected agents among groups by ratio rm(sh), i.e., 
Fm(sh) = ∑

1≤ j≤m�rm(sh) · n j
.

Candidate agent selection We also decide on a set of candidate agents by iteratively testing each agent’s bid starting from 
the first agent’s bid b1. That is, we find the last agent sk who ensures bk · Fm(sk) ≤ B and bk+1 · Fm(sk+1) > B . Then, the 
agent set S(sk) is the candidate agent set.

Agent selection and payment scheme Similar to the agent selection function Agent Select(Sk, G, B), at the beginning of the 
mechanism, we assign each agent si a weight wi = 2zi where zi ∈ N+ is an arbitrary integer such that no two agents have 
the same weight, i.e., zi �= zi′ for any i �= i′ . We try to select agents with the minimum total weight satisfying that at least 
�rm(sk) · n j
 agents in each group G j are selected from set S(sk) as follows,8 denoted by I L Pm

w(sk),

min
∑
i≤k

wi xi

s.t.,
∑
i∈G j

xi ≥ �rm(sk) · n j
,∀1 ≤ j ≤ m

xi ∈ {0,1},∀i ≤ k

xi = 0,∀i > k

(27)

Let Xm
w(sk) denote the solution of I L Pm

w(sk). If xi = 1, agent si is selected and her payment is pi = min{ B
Fm(sk)

, bk+1}, other-
wise, pi = 0.

Theorem 9. Mechanism BPMG-M guarantees individual rationality, budget-feasibility, computational efficiency, and truthfulness.

Proof. We refer to the earlier proofs in Section 4.2.1 for all the parts. �
Let ALGm denote the solution of Mechanism BPMG-M.

Theorem 10. (1) Mechanism BPMG-M achieves (mα(α + 2) + 1)-approximation ratio if BPMG-M can obtain at least one agent from 
each group (i.e., ALGm ≥ 1

nmax
) where α = nmax

nmin
.

(2) No budget-feasible proportion-representative mechanism M′′, that guarantees truthfulness and individual rationality, can ob-
tain ALGM′′ ≥ θ for any θ > 2m

nmin
where ALGM′′ is the solution of M′′ if Mechanism BPMG-M cannot select at least one agent from 

each group, i.e., ALGm = 0.

Proof. (1) The proof for the first property is similar to that in Theorem 8, and we will not repeat it here.
(2)Similar to the proof of the second property in Theorem 8, we still have rm(sk+1) ≤ 1

nmin
after adding agent sk+1

into S(sk) and M′′ can select at most Fm(sk+1) agents by truthfulness and budget-feasibility. Thus, we have Fm(sk+1) ≤∑
1≤ j≤m� 1

nmin
· n j
. Since each selected agent belongs to at most m groups, the minimum selection ratio is at most

8 Similarly, this problem can be solved in polynomial time by constructing Min-Cost Max-Flow networks.
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Fig. 8. An example shows that MPSG cannot be directly applied to heterogeneous agent scenarios.

Fm(sk+1)

nmax
≤

∑
1≤ j≤m( 1

nmin
· n j + 1)

nmax
≤ 2m

nmin

when selecting Fm(sk+1) agents. �
5. Heterogeneous agent setting

In the previous sections, we consider the proportional representation of groups where we want to obtain a proportional 
number of agents from each group. Such a setting corresponds to the case where the agents have identical values (i.e., 
vi = 1, ∀i ≤ n). In this section, we consider the setting where agents have different values, i.e., agent si has a value vi
which may be different from other agents. Based on the applicability of greedy approaches for designing mechanisms for 
the homogeneous setting, we naturally consider similar approaches for designing mechanisms for this setting. While our 
earlier mechanisms do not apply directly to the heterogeneous agent settings (see an example below), it turns out that we 
can extend our earlier mechanisms non-trivially to heterogeneous agents.

Let vmax and vmin denote the maximum and minimum value among agents, i.e., vmax = max1≤i≤n vi and vmin =
min1≤i≤n vi . Moreover, let V j = ∑

si∈G j
vi denote the sum of values of agents in group G j . Denote by Vmax and Vmin the 

maximum and minimum total value of agents among groups, i.e., Vmax = max1≤ j≤m V j and Vmin = min1≤ j≤m V j . We define 
the cost-per-value of agent si as ci

vi
, which is useful to evaluate each agent’s cost efficiency.

As agents have different values, our previous mechanisms cannot directly be applied to address heterogeneous agents 
due to the violation of truthfulness. For example, as shown in Fig. 8, we represent agents by rectangles while the lengths 
of rectangles indicate their values. We consider two groups G1 = {s1

1, s
1
2, s

1
3} and G2 = {s2

1, s
2
2, s

2
3, s

2
4, s

2
5}. The cost-per-values 

and values of agents in group G1 are {1, 1.5, 1.8} and {6, 1, 3}, while the cost-per-value and value for each agent in group 
G2 are 1 and 2 respectively. Assume that the budget of the planner is 15. By applying Mechanism BPSG, we select agent s1

1
from group G1 with payment 9, and select s2

1, s
2
2, s

2
3 from group G2 each with payment 2. Suppose that agent s1

1 misreports 
her cost-per-value as 1.6 which changes her position to s1

1′ as shown in Fig. 8(b). Then, agent s1
1′ will be selected with 

payment 1.8 × 6 = 10.8 achieving more utility. Thus, it fails to ensure agents’ truthfulness when agents have various values.

5.1. Mechanism for the single group model

To address the above challenges on ensuring agents’ truthfulness, we introduce a Budget-feasible Proportion-
representative mechanism for the Single Group model with heterogeneous agents (BPSG-H) below.

5.1.1. Mechanism design
We mainly follow the framework of Mechanism BPSG for the homogeneous agent setting. However, to ensure agents’ 

truthfulness, we design a novel payment scheme which finds threshold payments for the selected agents. The detail of 
Mechanism BPSG-H is shown in Algorithm 4.

We use b j
i and v j

i to denote the i-th agent’s (agent s j
i ) bid and value in group G j , respectively. That is, we sort all 

agents in the same group G j:1≤ j≤m in weakly increasing order of their bid-per-values, i.e., b j
1

v j
1

≤ b j
2

v j
2

≤ · · · ≤ b j
n j

v j
n j

. Denote by 

p j
i the payment for agent s j

i . We generate a virtual ratio set Rh according to the weakly increasing order of bid-per-values 
as follows,

Rh = ∪0≤i≤n j,1≤ j≤m

⎧⎨
⎩

∑
1≤h≤i

v j
h

V j

⎫⎬
⎭ (28)

We sort all ratios in weakly increasing order of their values where γl is the l-th element in Rh .
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Fig. 9. An example of the position of agent s j
i in group G j after she bids a higher cost.

Agent selection We iteratively consider ratios in Rh starting with the first ratio γ1. In the selection phase, we only use B
m

budget to select agents from all groups to ensure budget-feasibility. Suppose that we are now considering ratio γl . Recall 
that I j(γl) denotes the minimum number of agents which ensures that the selection ratio in group G j is at least γl , i.e.,

I j(γl) = arg min
1≤i≤n j

{
∑

1≤h≤i

vh ≥ γl · V j}.

Specifically, Mechanism BPSG-H will select up to n j − 1 agents from each group G j (to ensure truthfulness). Thus, when 
trying ratio γl , BPSG-H will terminate and output γl−1 as the final base selection ratio if there exists group G j with I j(γl) =
n j . When I j(γl) < n j, ∀1 ≤ j ≤ m, we continue to try the next ratio γl+1 if the following threshold holds,

P H
γl

=
∑

1≤ j≤m

⎛
⎝ b j

I j(γl)+1

v j
I j(γl)+1

·
∑

1≤i≤I j(γl)

v j
i

⎞
⎠ ≤ B

m
. (29)

It is not hard to see that P H
γl

increases with γl . Otherwise, the final base selection ratio is r f = γl−1. After deciding the 
final base selection ratio, we determine the final selected agents. Let k j denote the number of selected agents in group G j , 
i.e., k j = I j(r f ). In each group G j , the first k j agents are selected, i.e., s j

i ∈ S w , ∀i ≤ k j , and we have k j < n j .

Payment determination Next, we decide on the payment for each selected agent. For each selected agent s j
i (i ≤ k j), we 

want to decide her responding threshold payment that is the maximum cost she can bid to be selected. As shown in Fig. 9, 

suppose s j
i bids a higher cost b j′

i

v j
i

∈ (
b j

h

v j
h

, 
b j

h+1

v j
h+1

] where k j ≤ h < n j . We generate a new virtual ratio set R′
h under the new 

weakly increasing order of their bid-per-values. Let V j
−i,h denote the sum of values of the first h agents in group G j except 

value v j
i . Agent s j

i will still be selected if we can find a virtual ratio ri,h = arg minγ ∈R′
h
{γ >

V j
−i,h
V j

} under which the following 
threshold is still satisfied, i.e.,

P H
ri,h

= (V j
−i,h + v j

i )
b j

h+1

v j
h+1

+
∑
u �= j

⎛
⎝ bu

Iu(ri,h)+1

vu
Iu(ri,h)+1

·
∑

1≤i≤Iu(ri,h)

vu
i

⎞
⎠ ≤ B

m
.

Then, we find hi = arg maxk j≤h≤n j−1{P H
ri,h

≤ B
m }, and the payment of s j

i ∈ S w is

p j
i = b j

hi+1

v j
hi+1

· v j
i . (30)

5.1.2. Performance of mechanism BPSG-H

Theorem 11. Mechanism BPSG-H guarantees individual rationality and budget-feasibility.

Proof. It is easy to show individual rationality. We next focus on budget-feasibility. Denote by S j
w the selected agents in 

group G j, ∀1 ≤ j ≤ m, i.e., S j
w = {s j

1, ..., s
j
k j

}. Assume that agent s j
i (i ≤ k j) achieves the maximum payment-per-value among 

agents in S j
w , i.e., p j

i

v j
i

= max1≤h≤k j

p j
h

v j
h

. According to Eq. (29), we have P H
ri,hi

≤ B
m which implies 

∑
1≤h≤k j

p j
h = ∑

1≤h≤k j
v j

h ·
p j

h

v j
h

≤ (V j
−i,hi

+ v j
i ) ·

p j
i

v j
i

≤ B
m . Thus, the total payment of selected agents in group G j will not exceed B

m , and the total payment 

of m groups will not exceed B , that is, budget-feasibility holds. �
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Algorithm 4: Mechanism BPSG-H(B , b, S , G).
Input: B , b, S , G .
Output: P , S w

1 P ← 0, S w ← ∅;
2 Sort agents in G j(∀1 ≤ j ≤ m), in weakly increasing order of their bid-per-values and generate the virtual ratio set Rh with value sorted and 

indexed by γl ’s;
3 // Determine the final base selection ratio;
4 for 1 ≤ l ≤ |R| do
5 Compute I j(γl) = arg min1≤i≤n j {

∑
1≤h≤i vh ≥ γl ·V j} for any 1 ≤ j ≤ m;

6 if I j(γl) < n j , ∀1 ≤ j ≤ m then
7 Compute the payment P H

γl
according to (29);

8 if P H
γl

≤ B
m then

9 l ← l + 1;
10 else
11 break;
12 end
13 else
14 break;
15 end
16 end
17 r f ← γl−1;
18 // Agent selection and payment scheme;

19 Add agent s j
i (∀1 ≤ j ≤ m) with i ≤ k j = I j(r f ) into the selected agent set S w ;

20 Decide the payments to agents according to (30);
21 return P , S w

Theorem 12. Mechanism BPSG-H guarantees truthfulness.

Proof. It is easy to prove that each selected agent would still be selected if she bids a lower cost. Moreover, the payment 
for each selected agent is the threshold payment according to the payment determination in Mechanism BPSG-H. Thus, 
Mechanism BPSG-H guarantees truthfulness by the characterization of truthfulness in [59]. �

Assume that γl is the final base selection ratio. Recall that r j(γl) is the selection ratio of group G j after selecting the 

first k j agents, i.e., r j(γl) =
∑

i≤k j
v j

i

V j
, and rmax and rmin are the maximum and minimum selection ratios among groups, i.e., 

rmax = max1≤ j≤m{r j(γl)} and rmin = min1≤ j≤m{r j(γl)}. Specifically, we have rmin = γl = r f since there must exist at least 
one group G j whose selection ratio is r j(γl) = γl due to the generation of Rh in (28). Let ALG H and O P T H denote the 
minimum selection ratio of Mechanism BPSG-H and the optimal solution, respectively.9

Theorem 13. (1) Mechanism BPSG-H achieves (m + 1)(1 + ση)-approximation ratio where σ = vmax
vmin

, η = Vmax
Vmin

when BPSG-H can 
select at least one agent from each group, i.e., ALG H ≥ vmin

Vmax
.

(2) No budget-feasible proportion-representative mechanism MH , that guarantees truthfulness and individual rationality, can 
achieve ALGMH ≥ m · vmax

Vmin
+ θ for any θ > 0 where ALGMH is the solution of MH if Mechanism BPSG cannot select at least one 

agent from each group, i.e., ALG H = 0.

Proof. (1) As shown in Fig. 10, we sort agents in weakly increasing order of their bids in each group, e.g., b
j1
1

v
j1
1

≤ b
j1
2

v
j1
2

≤ · · · ≤
b

j1
n j1

v
j1
n j1

in group G j1 . The length of each rectangle s j
i in group G j is the marginal gain of the selection ratio after adding s j

i into 

the selected agent set when the first i − 1 agents have been selected. For example, the length of the rectangle representing 

s j1
1 is v

j1
1

V j1
. Mechanism BPSG-H selects the first k j agents from group G j (green rectangles).

Suppose that the final base selection ratio is the l-th element in virtual ratio set Rh , and we have r f = γl = ALG H and 
k j = I j(γl) is the number of selected agents in group G j . We have n j ≥ 2, ∀1 ≤ j ≤ m since BFSG-H can select at least one 
agent from each group. Depending on the conditions at the termination of BPSG-H, we consider the following two cases:

Case i) Suppose that there exists group G j from which we select all agents, i.e., ∃ j ≤ m, I j(γl+1) = n j , when trying the 
next virtual ratio γl+1. We have γl · V j = ∑

i≤n j−1 v j
i and O P T H ≤ 1, which implies O P T H

ALG H
≤ 1

γl
≤ 1 + vmax

vmin
.

9 Generally speaking, the framework of the approximation poofs in the heterogeneous setting are similar to that of homogeneous.
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Fig. 10. An example for the proof of Theorem 13.

Case ii) Next, we focus on the case that not all agents are selected from group G j when trying γl+1, i.e., I j(γl+1) <
n j, ∀1 ≤ j ≤ m. Let G ′ denote the set of all groups that can choose the first k j agents making the selection ratio in group 
G j equal to r f , i.e., r f · V j = ∑

i≤k j
v j

i , ∀G j ∈ G ′ . As shown in Fig. 10, G j1 is one of the groups in G ′ . Thus, we have 
r j(r f ) > r f , ∀G j /∈ G ′ . In addition, the next virtual ratio γl+1 must be,

γl+1 = min

⎧⎨
⎩ min

G j /∈G ′{r j(r f )}, min
G j∈G ′

⎧⎨
⎩

∑
i≤k j+1 v j

i

V j

⎫⎬
⎭

⎫⎬
⎭ .

According to the agent selection scheme of Mechanism BPSG-H, we have

P H
γl

=
∑

1≤ j≤m

⎛
⎝ b j

k j+1

v j
k j+1

·
∑

1≤i≤k j

v j
i

⎞
⎠ ≤ B

m
(31)

Depending on whether the next ratio γl+1 is generated from a group in G ′ or not, we consider the following two subcases:

Subcase 1: Assume that the virtual ratio γl+1 is generated from group G j2 /∈ G ′ where j1 �= j2 as shown in Fig. 4, i.e.,

γl+1 = r j2(r f ) = min

⎧⎨
⎩ min

G j /∈G ′{r j(r f )}, min
G j∈G ′

⎧⎨
⎩

∑
i≤k j+1 v j

i

V j

⎫⎬
⎭

⎫⎬
⎭ . (32)

Thus, we have r j(r f ) ≥ r j2 (r f ) = γl+1, ∀G j /∈ G ′ , and the number of selected agents with ratio γl+1 in group G j where 
G j /∈ G ′ should be k j . For the group G j in G ′ , the number of selected agents will be k j + 1. Since γl is the final base 
selection ratio, with ratio γl+1, we have

P H
γl+1

=
∑

G j∈G ′

∑
i≤k j+1

v j
i ·

b j
k j+2

v j
k j+2

+
∑

G j /∈G ′

∑
i≤k j

v j
i ·

b j
k j+1

v j
k j+1

>
B

m
. (33)

We divide agents into two parts: S̃ = {s j
i |i ≤ k j, ∀G j /∈ G ′} ∪ {s j

i |i ≤ k j + 1, ∀G j ∈ G ′} and S \ S̃ for further analysis.
For set S̃: The optimal solution can select all agents in S̃ with cost zero in the best case and spend the budget on the 

remaining agents in S \ S̃ . Since O P T H selects k j agents from each group G j not in G ′ , and k j + 1 agents from each group 
G j in G ′ , we have

max
G j /∈G ′

∑
i≤k j

v j
i

V j
= max

G j /∈G ′ r j(r f ) ≤ rmax

and

max
G j∈G ′

∑
i≤k j+1 v j

i

V j
≤ r f + max

G j∈G ′

v j
k j+1

V j
≤ rmin + vmax

Vmin
.

Thus, after choosing all agents in S̃ , the maximum selection ratio among all groups is max{rmax, rmin + vmax
Vmin

} ≤ rmin + vmax
Vmin

, 
and the minimum selection ratio is γl+1 due to (32). Thus, the optimal solution O P T H can achieve selection ratio γl+1 by 
choosing all agents in S̃ .
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For set S \ S̃: For group G j where G j /∈ G ′ , the bid-per-values of agents after s j
k j

are at least 
b j

k j+1

v j
k j+1

, while the bid-

per-values of agents after s j
k j+1 are at least 

b j
k j+2

v j
k j+2

in group G j ∈ G ′ . With budget B , the optimal solution can select at 

most m 
∑

i≤k j
v j

i value from the remaining agents after sk j with cost-per-value 
b j

k j+1

vk j+1
from group G j for any G j /∈ G ′ , and 

m 
∑

i≤k j+1 v j
i value with cost-per-value 

b j
k j+2

vk j+2
from the group G j ∈ G ′ due to Eq. (33). According to the analysis for the set 

S̃ , the minimum selection ratio among groups by selecting these numbers of agents is mγl+1 and the maximum selection 
ratio is m(rmin + vmax

Vmin
).

Thus, by combining set S̃ and S \ S̃ , we have O P T H ≤ rmin + vmax
Vmin

+ m(rmin + vmax
Vmin

) ≤ (m + 1)(r f + vmax
Vmin

).

Subcase 2: Assume that the virtual ratio γl+1 is generated from group G j2 ∈ G ′ , i.e.,

γl+1 =
∑

i≤k j2 +1 v j2
i

V j2

= min

⎧⎨
⎩ min

G j /∈G ′{r j(r f )}, min
G j∈G ′

⎧⎨
⎩

∑
i≤k j+1 v j

i

V j

⎫⎬
⎭

⎫⎬
⎭ .

Using similar arguments to the case above, we still have O P T H ≤ (m + 1)(r f + vmax
Vmin

).

Therefore, we have O P T H ≤ (m + 1)(ALG + vmax
Vmin

). Specifically, if Mechanism BPSG can select at least one agent from 
each group, i.e., ALG H ≥ vmin

Vmax
, we have O P T H

ALG H
≤ (m + 1)(1 + ση) which means Mechanism BPSG achieves (m + 1)(1 + ση)-

approximation ratio.
(2) Assume that there are m groups, and we sort agents in weakly increasing order of their bids in each group. Suppose 

that the budget of the planner is B . According to Mechanism BPSG-H, there are two cases as follows due to ALG H = 0:

i) When choosing the first agent from each group, we have 
∑

1≤ j≤m v j
1 · b j

2

v j
2

> B
m which implies that we cannot select at 

least one agent from each group. Moreover, the minimum selection ratio among groups is at most vmax
Vmin

when selecting the 
first agent in each group. Assume for purpose of contradiction that there exists a budget-feasible proportion-representative 
mechanism M with better performance ALGMH ≥ m · vmax

Vmin
+ θ . Myerson’s characterization [59] implies that the threshold 

payment for the first agent in group G j should be at least v j
1·b j

2

v j
2

, and thus the total payment now is 
∑

1≤ j≤m
v j

1b j
2

v j
2

> B
m . By 

truthfulness and budget-feasibility, M cannot select at most m · v j
1 value from group G j implying that M can achieve at 

most m · vmax
Vmin

which contradicts ALGMH ≥ m · vmax
Vmin

+ θ .

ii) There exists a group G j which contains only one agent, and we will select this agent from G j when trying the first 
virtual ratio which implies that we cannot select at least one agent from each group. Assume that we have ALGM ≥ θ . In 
this case, Mechanism MH must always select at least one agent from each group. Thus, the payment for the agent in G j
can be infinity by Myerson’s characterization [59], which violates budget-feasibility. Therefore, MH also cannot select at 
least one agent from each group using that payment which contradicts ALGMH ≥ θ . �
Theorem 14. No budget-feasible proportion-representative mechanism obtains an approximation ratio better than �(ση) where 
σ = vmax

vmin
and η = Vmax

Vmin
.

Proof. Suppose that we have m groups. Group G1 has n1 agents with cost-per-values {0, B−ε
vmax

, ..., B−ε
vmax

} and values 
{vmax, · · · , vmax}. While group Gm has nm agents, each with cost-per-value ε

vmin
and values {vmin, · · · , vmin}. Each remaining 

group G j(∀ j, 2 ≤ j ≤ m − 1) has n j agents with cost zero. Specifically, assume that V1 ≤ V2 ≤ · · · ≤ Vm and B = vmε > 2ε . 
Thus, we have Vmin = V1, Vmax = Vm . By Myerson’s characterization [59], the payment in G1 is at least B − ε for the first 
agent and is at least ε for the first agent in Gm to achieve truthfulness. Thus, by truthfulness and budget-feasibility, the so-
lution of any budget-feasible proportion-representative mechanism is no better than vmin

Vmax
since they can only select at most 

the first agent from G1 and Gm . However, the optimal solution is vmax
Vmin

. Thus, no budget-feasible proportion-representative 
mechanism can achieve an approximation ratio better than vmax

vmin
· Vmax
Vmin

. This completes the proof. �
5.2. Mechanisms for multiple group models

Recall that in the multiple group model, each agent si might belong to multiple groups, i.e., 1 ≤ |G(si)| ≤ m. We first 
consider the single counting case where the selection ratio in one of the groups G(si), say G j , would increase by vi

V j
if si is 

selected and contributes to G j , while in the multiple counting case, the selection ratios of all groups in G(si) would increase 
by vi for any G j ∈ G(si), once si is selected.
V j
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Algorithm 5: Mechanism BPMG-SH(B , b, S , G).
Input: B , b, S , G .
Output: P , S w

1 P ← 0, S w ← ∅;

2 B̂ ← vmin
vmax+vmin

B;

3 Sort all agents in the weakly increasing order of their bid-per-values, i.e., b1
v1

≤ b2
v2

≤ · · · ≤ bn
vn

;

4 // Determine the candidate agent set;
5 k ← 0;
6 for 1 ≤ i ≤ n do
7 Compute rH (si) according to (34);
8 F (si) ← ∑

1≤ j≤m rH (si) ·V j ;

9 if bi
vi

· F (si) ≤ B̂ then
10 k ← k + 1;
11 else
12 break;
13 end
14 end
15 k ← i − 1;
16 // Agent selection and payment scheme;
17 Let X H (sh) denote the solution of I L P H (sh);

18 The payment for si ∈ S w is pi = vi min{ B̂
F (sk)

, bk+1
vk+1

};

5.2.1. Single counting case
In this section, we introduce a Budget-feasible Proportion-representative mechanism for the Multiple Group setting in

Single counting case with heterogeneous agents, called BPMG-SH.
Intuitively, we modify Mechanism BPMG-S to address heterogeneous agents. Given different values of agents, we use 

B̂ = vmin
vmax+vmin

B when selecting agents for budget-feasibility. In detail, we first sort all agents in weakly increasing order of 
their bid-per-values b1

v1
≤ b2

v2
≤ · · · ≤ bn

vn
. Recall that S(sh) = {si |i ≤ h} is the set containing agents before agent bh+1. We 

modify the integer program formulation (20) to compute a matching result under a given agent set S(sh), that maximizes 
the minimum selection ratio among groups while ignoring the costs and budget constraint, denoted by I L P H (sh) as follows,

max min
1≤ j≤m

∑
i≤h xi j vi

V j

s.t.,
∑

1≤ j≤m

xij ≤ 1,∀1 ≤ i ≤ h

xij ∈ {0,1},∀1 ≤ i ≤ h, G j ∈ G(Si)

xij = 0,∀1 ≤ i ≤ h, G j /∈ G(Si)

(34)

where the three conditions indicate that agents in S(sh) can only be matched to at most one of the groups they belong 
to. Similar to earlier sections, optimal solution for (34) can be computed in polynomial time by constructing Min-cost Max-
Flow networks. To guarantee truthfulness, we need to ensure the algorithm for solving Min-cost Max-Flow returns the same 
solution under the same agent set S(sh). To do this, different from the homogeneous agent setting, we will set a unique 
index for each node of the flow network. Note that the network is the same when the input agent set does not change. 
After the construction of the networks, we then run the Ford-Fulkerson algorithm [61] and use Bellman-Ford algorithm to 
consider the path with the smallest lexicographical order of nodes’ indexes when searching the augmenting path, which can 
always output the same solution under the fixed flow network.

Let X H (sh) denote the solution of I L P H (sh), and rH (sh) be the minimum selection ratio among groups under X H (sh). In 
the heterogeneous agent scenario, F (sh) denotes the sum of values that should be selected under rH (sh) in each group, i.e.,

F (sh) =
∑

1≤ j≤m

rH (sh) · V j. (35)

It is obvious that F (sh) ≤ ∑
si∈S(sh) vi .

Agent selection and payment scheme Now we are ready to select agents. We iteratively test each agent starting from the 
first agent s1. Suppose that we are now trying agent si and calculating the value of F (si) by Eq. (35). If bi

vi
· F (si) ≤ B̂ , 

we consider the next agent si+1, otherwise, we select agents from the previous i − 1 agents S(si−1). Assume that sk is 
the last agent who satisfies bk

vk
· F (sk) ≤ B̂ which implies bk+1

vk+1
· F (sk+1) > B̂ . After determining value k, we decide winners 

and corresponding payments. If agent si(i ≤ k) is matched to one of the groups in X H (sk), i.e., 
∑

1≤ j≤m xij = 1, then she is 
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selected, i.e., si ∈ S w . The payment for each selected agent is pi = vi · min{ B̂
F (sk)

, bk+1
vk+1

} while the payments for unselected 

agents are zero. Specifically, the payment for each selected agent is B̂
F (sk)

if k = n.
Next, we analyze the performance of Mechanism BPMG-SH.

Theorem 15. Mechanism BPMG-SH guarantees individual rationality and budget-feasibility.

Proof. It is easy to show individual rationality. Next, we consider budget-feasibility. Recall that F (sk) = ∑
1≤ j≤m rH (sk) · V j . 

In group G j , the total value of the selected agents must satisfy 
∑

1≤i≤n xi j vi ≤ rH (sk) ·V j + vmax due to (34). Thus, we have

∑
si∈S w

pi =
∑

1≤ j≤m

∑
1≤i≤n

xi j vi · min{ B̂

F (sk)
,

bk+1

vk+1
}

≤ min{ B̂

F (sk)
,

bk+1

vk+1
}

∑
1≤ j≤m

(rH (sk) · V j + vmax)

≤ min{ B̂

F (sk)
,

bk+1

vk+1
}(F (sk) + mvmax) ≤ B

where the last inequality is because Mechanism BPMG-SH will select at least one agent from each group under rH (sk), i.e., 
F (sh) ≥ m · vmin . �
Theorem 16. Mechanism BPMG-SH guarantees truthfulness.

Proof. According to the definition of F (sk+1), it is obvious that F (sk+1) ≥ F (sk). Since sk is the last agent among candidate 
agents, we have,

bk

vk
· F (sk) ≤ B̂,

bk+1

vk+1
· F (sk+1) > B̂ (36)

The payment for agent si ∈ S w is pi = vi · min{ B̂
F (sk)

, bk+1
vk+1

}. Denote by O  = 〈s1, s2, ..., sk, ..., sn〉 the order of agents in weakly 
increasing order of their bids.

Monotonicity: For any agent si with i ≤ k and si ∈ S w , si is selected when bidding real cost ci . If si decreases her bid to 
b′

i ≤ ci , agents before sk+1 will not change and si will still be selected. Therefore, Mechanism BPMG-S is monotonic.

Threshold payments: For any agent si with i ≤ k and si ∈ S w , her payment is pi = vi · min{ B̂
F (sk)

, bk+1
vk+1

}. According to the 

relationship between B̂
F (sk)

and bk+1
vk+1

, we further consider two subcases:

• B̂
F (sk)

≤ bk+1
vk+1

: For agent si with i ≤ k, we have pi = vi ·B̂
F (sk)

and bi
vi

≤ B̂
F (sk)

. If she bids a higher cost b′
i

vi
> B̂

F (sk)
(let si′ denote 

the new position after bidding a false cost), she will be after agent sk and the new order now is

O ′ = 〈s1, ..., si−1, si+1, ..., sk, ..., si′ , ..., sn〉
Let S(sh)′ denote agents before sh (including herself) in the new sequence O ′ , and F (sh)′ denote the new value with 
ratio computed by (34) with input S(sh)′ . We have S(sk) ⊆ S(si′)′ which means F (si′ )′ ≥ F (sk). Thus, we must have 
b′

i
vi

· F (si′ )′ > B̂
F (sk)

· F (sk) = B̂ which implies that agent si will not be selected, and her utility is zero. Therefore, the value 
vi · B

F (sk)
is the critical value for the selected agent si ∈ S w and the selected agents are paid threshold payments.

• B̂
F (sk)

>
bk+1
vk+1

: For agent si with i ≤ k, we have pi = vi · bk+1
vk+1

. If she bids a higher cost b′
i

vi
>

bk+1
vk+1

, it is easy to find that 

S(sk+1) ⊆ S(si′)′ and F (si′ )′ > F (sk+1). Thus, we have b′
i

vi
· F (si′ )′ >

bk+1
vk+1

· F (sk+1) > B̂ which implies that agent si will 

not be selected. Therefore, the value vi · bk+1
vk+1

for the selected agent si ∈ S w is the critical value and the selected agents 
are paid threshold payments.

Therefore, Mechanism BPMG-S guarantees truthfulness. �
Let ALGs

H and O P T s
H denote the minimum selection ratio of Mechanism BPMG-SH and the optimal solution, respectively.

Theorem 17. (1) Mechanism BPMG-SH achieves [mη(1 + σ)(1 + ση) + 1]-approximation ratio if BPMG-SH can select at least one 
agent from each group (i.e., ALGs ≥ vmin ) where σ = vmax , η = Vmax .
H Vmax vmin Vmin
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(2) No budget-feasible proportion-representative mechanism M′
H , that guarantees truthfulness and individual rationality, can 

obtain ALGM′
H

≥ θ for any θ > (1 + vmax
vmin

) vmax
Vmin

where ALGM′
H

is the solution of M′
H if Mechanism BPMG-S cannot select at least 

one agent from each group, i.e., ALGs
H = 0.

Proof. (1) The bid-per-values of agents before sk+1 are at most bk+1
vk+1

while the bid-per-values of agents after sk+1 are at 

least bk+1
vk+1

. According to Mechanism BPMG-SH, we have ALGs
H = rH (sk). For the agents before sk+1, the optimal solution 

O P T s
H can select all these k agents with zero costs in the best case. Then, the minimum selection ratio among these agents 

is still rH (sk).
For the agents after sk , O P T s

H can select at most F (sk+1) · vmin+vmax
vmin

value due to (36) with budget B . For the set S(sk), 
the maximum increase in the minimum selection ratio among all groups is max1≤ j≤m

vk+1
V j

≤ vmax
Vmin

after adding agent sk+1

into S(sk), i.e., r(sk+1) ≤ r(sk) + vmax
Vmin

. Thus, we have

F (sk+1) =
∑

1≤ j≤m

r(sk+1) · V j ≤
∑

1≤ j≤m

(
r(sk)V j + vmax

Vmin
V j

)
.

In the best case, the maximum increase in the minimum selection ratio among all groups is 
F (sk+1)

vmin+vmax
vmin

Vmin
by adding 

vmin+vmax
vmin

F (sk+1) value. Thus, we have

F (sk+1)
vmin+vmax

vmin

Vmin
≤ vmin + vmax

vmin

∑
1≤ j≤m

(
r(sk)V j + vmax

Vmin
V j

)
/Vmin

≤ m
vmin + vmax

vmin
·
(

r(sk) · Vmax

Vmin
+ vmaxVmax

V2
min

)
.

Thus, we have O P T s
H ≤ r(sk) + F (sk+1)

Vmin
≤ (m · (1 + vmax

vmin
)Vmax
Vmin

+ 1) · ALGs
H + m · (1 + vmax

vmin
) vmaxVmax

V2
min

. Additionally, if Mechanism 

BPMG-SH can select at least one agent from each group, i.e., ALGs
H ≥ vmin

Vmax
, we have O P T s

H
ALGs

H
≤ (m · (1 + vmax

vmin
)Vmax
Vmin

+ 1) +
m · (1 + vmax

vmin
)

vmaxV2
max

vminV2
min

≤ mη(1 + σ)(1 + ση) + 1.

(2) Since sk is the last agent among candidates, we have F (sk) = 0 when ALGs
H = 0 and consider the following two 

cases:

• F (sk) = 0(k = n): There is no feasible ratio in (34) with input S(sn), i.e., we cannot find a matching that allocates non-
zero value to each group. Thus, no budget-feasible proportion-representative mechanism M′

H can achieve ALGM′
H

≥ θ

for any θ > 0.
• F (sk) = 0(k < n): We have rH (sk) = 0 and bk

vk
· F (sk) ≤ B̂, bk+1

vk+1
· F (sk+1) > B̂ . For the set S(sk), the maximum increase 

in the minimum selection ratio among all groups is vmax
Vmin

, i.e., rH (sk+1) ≤ vmax
Vmin

, after adding agent sk+1. For the agent 

si before sk+1, Myerson’s characterization [59] implies that her threshold payment should be at least vi · bk+1
vk+1

. For the 

agents after sk , we have bi
vi

≥ bk+1
vk+1

, ∀i > k. Thus, by truthfulness and budget-feasibility, mechanism M can select at 
most (1 + vmax

vmin
)F (sk+1) value with budget B which implies ALGM ≤ rH (sk+1) ≤ (1 + vmax

vmin
) vmax
Vmin

.

This finishes the proof. �
5.2.2. Multiple counting case

We can easily modify the Mechanism BPMG-SH to address the multiple counting case. When computing a matching 
result under a given agent set S(sh), we modify the integer program formulation (34) as follows,

max min
1≤ j≤m

∑
i≤h xi vi

V j

s.t. xi ∈ {0,1},∀1 ≤ i ≤ h, G j ∈ G(Si)

xi = 0,∀1 ≤ i ≤ h, G j /∈ G(Si)

(37)

Let X H,m(sh) denote the solution of the above programming, and rH,m(sh) be the minimum selection ratio among groups 
under X H,m(sh). Recall that F (sh) denotes the sum of values that should be selected under rH,m(sh) in each group, i.e.,
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F (sh) =
∑

1≤ j≤m

rH,m(sh) · V j. (38)

Agent selection and payment scheme Now we are ready to select agents. We find sk such that bk
vk

· F (sk) ≤ B̂ and bk+1
vk+1

·
F (sk+1) > B̂ . After determining value k, we define agent set S(sk) = {si : i ≤ k} as the candidate agent set and decide 
the final winners. If xi = 1 in X H,m(sh), then si is selected, i.e., si ∈ S w . The payment for each selected agent is pi =
vi · min{ B̂

F (sk)
, bk+1

vk+1
} while the payments for unselected agents are zero. Specifically, the payment for each selected agent is 

B̂
F (sk)

if k = n.
The above mechanism can achieve the same approximation ratio as that in Section 5.2.1.

6. Extension to weighted proportional selection

In this section, we consider the weighted proportional selection setting where there is a weight ϕ j assigned to 
group G j for any j ≤ m and the objective is to maximize the minimum weighted selection ratio among groups, i.e., 
max min j≤m

ϕ j Q j∑
si∈G j

vi
. A higher ϕ j results in the mechanism placing less emphasis on selecting agents from group G j . 

Next, we modify the proposed mechanisms for the homogeneous setting to address the weighted proportional selection. A 
similar modification can be applied to the heterogeneous setting. Here, we only give mechanisms without approximation 
guarantees.

6.1. Single group model

We first modify Mechanism BPSG to address the weighted proportional selection for the homogeneous setting. The main 
difference is that the generated virtual ratio set R should consist of possible weighted selection ratios among all groups, i.e.,

R = ∪0≤i≤n j,1≤ j≤m

{
ϕ j · i

n j

}
, (39)

and sort all weighted ratios in the weakly increasing order of their values, where γl is the l-th element in R, i.e., γ1 < γ2 <

· · · < γl < · · · < γ|R| .
To find the final base selection ratio, we iteratively consider weighted ratios in R starting with the first ratio γ1. Suppose 

that we are now considering ratio γl for l > 1. Recall that I j(γl) denotes the minimum number of agents which ensures that 
the selection ratio in group G j is at least γl , and we thus have I j(γl) = � γl

ϕ j
· n j
, which should depend on the weight ϕ j of 

group G j . Then, similar to Mechanism BPSG, we find the final base selection ratio r f = γl which satisfies

Pγl =
∑

1≤ j≤m

I j(γl) · b j
I j(γl)+1 ≤ B (40)

and

Pγl+1 =
∑

1≤ j≤m

I j(γl+1) · b j
I j(γl+1)+2 > B (41)

Once deciding the final base selection ratio, we determine the final selected agents and corresponding payments. Let k j

denote the number of selected agents in group G j , i.e., k j = I j(r f ) = Q j . In each group G j , the first k j agents are selected, 
i.e., s j

i ∈ S w , ∀1 ≤ i ≤ k j , and we have k j < n j . Then we have

p j
i =

{
b j

k j+1, i f s j
i ∈ S w

0, otherwise.
(42)

6.2. Multiple group model

We now modify Mechanism BPMG-S for the single counting case in multiple group model.10 When using integer program 
formulation to compute a matching under a given agent set S(sh), we should update the objective as follows,

10 We can apply the similar modification for the multiple counting case.
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max min
1≤ j≤m

ϕ j · ∑1≤i≤h xi j

n j

s.t.,
∑

1≤ j≤m

xij ≤ 1,∀1 ≤ i ≤ h

xij ∈ {0,1},∀1 ≤ i ≤ h, G j ∈ G(Si)

xij = 0,∀1 ≤ i ≤ h, G j /∈ G(Si).

(43)

Note that the optimal solution of the above integer program can still be computed in polynomial time by constructing 
Max-Flow networks as follows. However, there are two difference from Mechanism BPMG-S: 1) Given an agent set S(sh), all 
possible selection ratios for group G j are in ∪y≤|S(sh)∩G j |{ϕ j

y
n j

}; 2) When constructing a flow network based on such ratio 
rs , each edge from source s to G j is assigned with a capacity � rs

ϕ j
· n j
, and if the maximum flow on such network equals 

to 
∑

1≤ j≤m� rs
ϕ j

· n j
, then rs is a feasible ratio.

Recall that r(sh) is the minimum selection ratio among groups in (43) and we can compute the total number of agents 
under ratio r(sh), i.e.,

F (sh) =
∑

1≤ j≤m

� r(sh)

ϕ j
· n j
. (44)

Candidate agent selection Similar to Mechanism BPMG-S, we find sk such that bk · F (sk) ≤ B and bk+1 · F (sk+1) > B . After 
determining the value k, we define agent set S(sk) = {si : i ≤ k} as the candidate agent set.

Agent selection and payment scheme Now we select agents from the candidate agent set S(sk). The main difference from 
Mechanism BPMG-S is the minimum weight matching between agents and groups that can minimize the total weight of 
matched agents satisfying that each group G j has � r(sk)

ϕ j
· n j
 matched agents from set S(sk) as follows

min
∑

1≤i≤k

∑
1≤ j≤m

wi xij

s.t.,
∑

1≤ j≤m

xij ≤ 1,∀i ≤ k

∑
1≤i≤k

xi j = � r(sk)

ϕ j
· n j
,∀1 ≤ j ≤ m

xij ∈ {0,1},∀i ≤ k, G j ∈ G(Si)

xij = 0,∀i ≤ k, G j /∈ G(Si).

(45)

If agent si:i≤k is matched to one of the groups, i.e., 
∑

1≤ j≤m xij = 1, then she is selected, i.e., si ∈ S w . The payment for each 
selected agent is pi = min{ B

F (sk)
, bk+1} while the payments for unselected agents are zero.

7. Conclusion

In this paper, we consider the proportion representation budget-feasible mechanism design problem where agents may 
have diverse group attributes and belong to different groups. We focus on designing budget-feasible mechanisms that can 
select appropriate proportions of agents from various groups satisfying individual rationality, budget-feasibility, and truthful-
ness under several settings. We start with homogeneous agent scenarios where agents have identical values. For the single 
group model, we propose Mechanism BPSG, which iteratively considers each virtual ratio generated by the distribution of 
agents across groups and finds the maximum one as the base selection ratio for all groups. For the multiple group model, we 
first consider the single counting case and propose Mechanism BPMG-S, which leverages the Max-Flow technique to mea-
sure the supply of agents under a fixed payment and identifies the payment which can maximize the minimum selection 
ratio among groups. We then extend BPMG-S to the multiple counting case to account for the situation in which agents can 
represent all of their respective groups. Finally, we consider heterogeneous agents where the agents can contribute different 
values under the single group and multiple group models. We carefully extend the designed mechanisms from the homo-
geneous agents to the heterogeneous setting. All the designed budget-feasible proportion-representative mechanisms can 
guarantee desirable properties like individual rationality, budget-feasibility, truthfulness, and approximation performance on 
proportional representation.

Future work on this problem may concentrate on the following directions: (i) It is natural to design a general mecha-
nism or randomized mechanism for the heterogeneous setting that can simultaneously address the homogeneous setting 
efficiently. (ii) It is promising to consider different methods of computing the selection ratio for each group, e.g., considering 
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decreasing marginal contributions of choosing additional agents. (iii) It is also potential to consider proportion-representative 
pricing mechanisms where the organizer posts prices to agents without requiring agents to bid their costs.
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