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Abstract—Federated learning (FL) is a promising approach
that allows requesters (e.g., servers) to obtain local training
models from workers (e.g., clients). Since workers are typi-
cally unwilling to provide training services/models freely and
voluntarily, many incentive mechanisms in FL are designed to
incentivize participation by offering monetary rewards from
requesters. However, existing studies neglect two crucial aspects
of real-world FL scenarios. First, workers can possess inherent
incompatibility characteristics (e.g., communication channels and
data sources), which can lead to degradation of FL efficiency (e.g.,
low communication efficiency and poor model generalization).
Second, the requesters are budgeted, which limits the amount
of workers they can hire for their tasks. In this paper, we
investigate the scenario in FL where multiple budgeted requesters
seek training services from incompatible workers with private
training costs. We consider two settings: the cooperative budget
setting where requesters cooperate to pool their budgets to
improve their overall utility and the non-cooperative budget
setting where each requester optimizes their utility within their
own budgets. To address efficiency degradation caused by worker
incompatibility, we develop novel compatibility-aware incentive
mechanisms, CARE-CO and CARE-NO, for both settings to elicit
true private costs and determine workers to hire for requesters
and their rewards while satisfying requester budget constraints.
Our mechanisms guarantee individual rationality, truthfulness,
budget feasibility, and approximation performance. We conduct
extensive experiments using real-world datasets to show that the
proposed mechanisms significantly outperform existing baselines.

I. INTRODUCTION

Federated learning (FL) [1], [2] is a decentralized machine
learning paradigm that enables collaborative model training
across a group of workers (e.g., clients, mobile devices and
data owners) without directly sharing or revealing workers’
raw data openly. Recently, FL has gained significant attention
and has been applied to various applications in domains such
as edge computing [3], healthcare [4], and finance [5].

In FL, requesters (e.g., servers, and model owners) publish
their training tasks and workers participate in the training tasks
by using their local data to train local models [6]. It has
been observed that workers are commonly unwilling to freely
contribute to training due to the costs of using their own data
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and computational resources [7]. In addition, workers’ costs
are naturally private and unknown to the platform. Therefore,
previous works [8]–[10] have designed (truthful) incentive
mechanisms in FL to elicit workers’ true private costs, select
workers to hire for requesters/tasks, and determine workers’
rewards/payments for training and providing local models. As
the requesters often have limits on how much they can pay the
workers, recent studies have focused on designing incentive
mechanisms that ensure that the total payment to workers does
not exceed the requester’s budget [9], [11]–[13].

However, existing incentive mechanism design studies in
FL do not consider two crucial aspects: (1) multiple budgeted
requesters and (2) the compatibility of workers that are preva-
lent in real-world FL. Regarding multiple budgeted requesters,
existing settings primarily concentrate on designing incentive
mechanisms for a single budgeted requester [14]–[16]. How-
ever, these approaches do not provide reasonable incentive
mechanisms for multiple requesters who simultaneously seek
to hire workers for their respective tasks, particularly in natural
situations where each requester has limited ability to hire
workers. Regarding the compatibility of workers, existing
incentive mechanisms in FL ignore the fact that workers can
be categorized into different groups based on their inherent
incompatibility characteristics. Those within the same group
are incompatible in jointly performing tasks.

In general, compatibility issues are common in practical
FL. For instance, in the FL that utilizes congested wireless
communication channels (e.g., the wireless spectrum) to up-
date global model parameters, workers (e.g., mobile devices)
can experience congestion or disconnections due to bandwidth
limitations [17]. To enhance the stability and efficiency of
communication, it is often advisable to restrict the number
of workers using the same channel [18]. In such scenarios,
workers are often grouped based on their specific communi-
cation channels, leading to incompatibilities between workers
within the same group [17]. In addition, workers can also be
grouped according to the similarity of their datasets and data
sources (e.g., data collected from populations with varying
demographics, ages or levels of education). To improve the
performance (e.g., generalization or robustness [19]) of the
global model, each requester prefers a broader selection of
workers from various data sources, especially within their
budgets [20]. Consequently, workers with the same data source
become incompatible when selected simultaneously. There-



fore, disregarding the compatibility of workers can lead to
low efficiency in FL, such as prolonged communication times
during the model update process and poor generalization of
the trained global model.
Our Goal and Contributions. Motivated by the above
real-world scenarios, we investigate the problem of design-
ing Compatibility-Aware incentive mechanisms in fedeRated
lEarning (CARE) with multiple budgeted requesters and in-
compatible workers. Specifically, workers are classified into
groups based on their inherent incompatibility characteristics
(e.g., communication channels, and data sources). In addition,
there are compatibility constraints among workers, i.e., the
number of workers assigned to the same requester/task from
each group should not exceed a predefined threshold. Our goal
is to design incentive mechanisms under the CARE problem
to elicit workers’ true private costs, select workers to hire
for requesters/tasks that optimize the overall reputation (i.e., a
common objective in FL [9], [21]), and determine payments
to the selected workers subject to the compatibility constraints
and requesters’ budgets. Moreover, the designed mechanisms
should satisfy desirable properties, including individual ra-
tionality, truthfulness, budget feasibility, and approximation
guarantees. We refer readers to Section III-B for justifications.

Because of multiple budgeted requesters and incompatible
workers, designing incentive mechanisms under the CARE
problem faces three main new challenges compared to existing
studies. 1) Cost-effective worker selection: It is efficient to
prioritize workers with low-cost and high-reputation during
the worker selection. However, despite their cost-effectiveness,
these workers can violate compatibility constraints, making
it difficult to find workers that satisfy both cost-effectiveness
and compatibility. 2) Stronger strategic manipulation: With
multiple requesters, it is essential to adaptively match workers
to requesters. However, this also creates more opportunities
for workers to engage in strategic manipulation, e.g., a worker
may bid a false cost to be matched with a different requester
and thereby obtain higher utility. 3) Unpredictable payments:
To satisfy requesters’ budgets, we should evaluate both the
reputation and the payments that each requester can obtain
and must pay when selecting workers. However, this process is
intractable because workers’ payments remain uncertain until
the final outcome of worker selection is determined, which is
necessary to ensure truthfulness.

We consider the CARE problem under two realistic budget
settings: (i) Cooperative budget setting: Requesters collaborate
by pooling their budgets (e.g., hospitals integrate healthcare
resources such as public funds applied from the organization
to train a disease recognition model [4], [22]), enabling them
to hire more workers and thereby enhance their overall utility
(e.g., improving the model accuracy by collaboratively shar-
ing and aggregating trained models between requesters [15],
[23]). (ii) Non-cooperative budget setting: Each requester hires
workers within their own budgets. Our main contributions are
summarized as follows:

• To the best of our knowledge, we are the first to design
compatibility-aware incentive mechanisms in FL that cap-

ture workers’ inherent incompatibilities and requesters’
limited hiring abilities, thereby preventing efficiency
degradation and improving budget utilization.

• We first propose CARE-CO mechanism for cooperative
budget setting. Particularly, CARE-CO transforms the
selection of workers within the compatibility constraint
into a Max-Flow problem, allowing us to explore dif-
ferent potential prices while simultaneously ensuring
efficiency. We then propose CARE-NO mechanism for
non-cooperative budget setting, which first divides all
workers into multiple sets so that each set of workers have
similar reputations. Additionally, it introduces a virtual-
price based sub-mechanism, named PEA, to address each
worker set independently. Specially, PEA utilizes the
concept of virtual prices to evaluate requesters’ ability
to obtain reputation and determines the critical price that
aligns with this ability, thereby ensuring both budget
feasibility and truthfulness.

• Our mechanisms are proved to guarantee individual ratio-
nality, truthfulness, budget feasibility, and computational
efficiency. Moreover, our mechanisms achieve approxi-
mation guarantees in comparison to the optimal solution
that has prior knowledge of workers’ private costs.

• Finally, we conduct experiments on two commonly
adopted datasets in FL, i.e., Fashion MNIST (FMNIST)
and CIFAR-10. Evaluation results show that our mecha-
nisms improve overall reputation of selected workers by
about 824% and the global model accuracy by about 57%
on average compared to baselines.

This paper is structured as follows. Section II reviews the
related works. The system model and the definition of the
problem are given in Section III. We propose CARE-CO and
CARE-NO in Section IV and V, respectively. Section VI
presents the experimental results. Finally, the conclusion is
given in Section VII.

II. RELATED WORK

Recently, a large body of literature has investigated incentive
mechanisms in FL. We refer the reader to the comprehensive
survey [7], [10]. In the following, we focus on discussing
related works on (budgeted) reverse auction-based or procure-
ment mechanisms in FL and general settings.

Reverse Auction or Procurement Based Mechanisms
for Federated Learning. Reverse auction or procurement
based mechanisms have been extensively used in various FL
scenarios, effectively guiding the requesters in selecting high-
quality workers to participate in training tasks and maximize
the objective such as the social welfare [17], [24], model
accuracy [9] and the requester’s utility [25]. While previous
works have overlooked the budget constraint of the requester,
Fan et al. [11] address this issue by considering the requester’s
budget and introducing a data quality-driven reverse auction.
This approach aims to maximize the requester’s global model
accuracy. In a similar vein, Zhang et al. [9] design a reputation
calculation method to indirectly capture the data quality of
workers when designing the reverse auction-based incentive
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Fig. 1: FL with incompatible workers and budgeted requesters.

mechanism under the budget constraint. Building upon this,
Zhang et al. [13] focus on the online setting of the afore-
mentioned problems, where workers arrive in a specific order.
In addition, there are other works that examine budgeted
incentive mechanisms in FL. These works explore various as-
pects such as differential private noises [26], [27], trustworthy
data acquisition [28], and competition among federations [29].
However, all these works do not explicitly consider worker
compatibility and typically assume a single requester in FL.

Budget Feasible Mechanisms. Regarding designing bud-
geted reverse-auction or procurement mechanisms in general
settings, our work is also related to the settings of budget
feasible mechanism design (see e.g., [30]–[33]). In a typical
setting of budget feasible mechanism design, a single buyer
(i.e., requester) with a budget wants to procure services
from sellers (i.e., workers) with private costs. However, all
these settings assume a single buyer (requester) and disregard
entirely the inherent compatibility issues among workers. We
note that there are few works in budget feasible mechanisms
consider multiple buyers [34], [35]. However, they ignore the
compatibility among workers. Therefore, existing mechanisms
do not apply to our problem.

In contrast to the aforementioned previous works, our
study focuses on incentive mechanisms for multiple budgeted
requesters and incompatible workers in FL.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

As shown in Fig. 1, we consider the FL system consisting
of incompatible workers and multiple budgeted requesters.
Requesters first publish their training tasks and workers submit
their bids (e.g., each worker’s bid corresponds to the cost
of training local models). Subsequently, we implement the
designed incentive mechanism, which takes into account work-
ers’ bids, reputations (e.g., calculated by historical task perfor-
mance [9]), compatibility constraints and requesters’ budgets,
to assign workers to requesters. The selected workers are

provided with initial global models from their corresponding
requesters and train their local models, which they then upload
to requesters for aggregation. This iterative process continues
until requesters’ models converge. Finally, requesters compen-
sate workers with monetary rewards for their services.

B. Problem Definition

Let S = {s1, s2, . . . , sn} denote the set of workers who
can be recruited to conduct model training tasks locally. Each
worker si has a private raw dataset and a cost ci to participate
in a task, e.g., the consumption of energy and computational
resource. There are m requesters A = {a1, a2, . . . , am},
and each requester aj holds a training task and seeking to
hire a subset of workers Sj → S to carry out the training
using their datasets1. Each requester aj has a budget Bj for
hiring workers, and we use B = {B1, B2, . . . , Bm} to denote
requesters’ budgets. Suppose that workers’ costs are no higher
than requesters’ budgets [34], [35]. We consider two different
budget settings: 1) Cooperative budget setting: Requesters are
willing to collaborate by pooling their budgets, and denoted
by B =

∑
j→m

Bj the total budget of all requesters. 2) Non-
cooperative budget setting: Each requester hire workers within
their individual budget.

Compatibility Constraints: Due to the inherent incompat-
ibility characteristics of workers, workers are categorized into
L different groups, i.e., G = {G1, G2, · · · , Gl, · · · , GL}. We
define ωlj as the compatibility level of group Gl for requester
aj , which indicates the maximum number of workers in Gl can
be selected for aj (e.g., ωlj = 1 means that only one worker in
Gl can be selected for aj). Then, we define the compatibility
constraint such that |Sj ↑Gl| ↓ ωlj , ↔j ↓ m, l ↓ L.

Incomplete Information: We consider the incomplete in-
formation scenario where each worker’s cost is private (known
by themselves). Thus, each worker can behave strategically to
misreport their private cost to improve their utility (defined
below). Let bi denote the cost reported by worker si, which
may not equal (or potentially much higher than) the true cost
ci. Denote by b = {b1, b2, ..., bn} and b↑i the set of workers’
bids and the set of workers’ bids except bi, respectively.

Incentive Mechanism: Let Sw be the winner (or selected)
worker set, i.e., Sw = ↗j→mSj . The incentive mechanism
M = (X,P ) consists of the allocation rule X which maps
the bid profile b to Sw and the payment rule P which
decides the payment for each winner. Let xij ↘ {0, 1}
indicate whether worker si is allocated to requester aj , and
xi :=

∑
j→m

xij ↓ 1. In particular, xi = 1 implies si ↘ Sw.
Let pij be the payment paid to worker si from requester aj

and pi :=
∑

j→m
pij . Specially, if xij = 0, then pij = 0.

Given the mechanism M, the utility of worker si is the
difference between the true cost and the received payment,
i.e., ui

s
(b,M) = pi ≃ xi · ci.

1We focus on scenarios where workers have the same type of datasets,
e.g., image classification or NLP datasets, while requesters seek their own
models using data from these workers. Our mechanisms can also be readily
generalized to scenarios where workers have different dataset types by
applying them separately to groups of workers with the same dataset type.



Algorithm 1: CARE-CO(B, b, A, S,G)
Output: P, Sw

1 P ↑ 0, Sw ↑ ↓;
2 Sort all workers as b1

v1
↔ b2

v2
↔ · · · bn

vn
;

3 // Worker selection;
4 for 1 ↔ i ↔ n do
5 Compute M(Si) by Eq. (1) - (4);
6 If bi

vi
· M(Si) ↔ B, i ↑ i+ 1; otherwise, break;

7 end
8 k ↑ i↗ 1;
9 Decide the allocation X by the solution of M(Sk);

10 Selected workers perform training tasks for requesters;
11 // Payment scheme;
12 for i ↔ n, j ↔ m do
13 pij = vi · xij min{ bk+1

vk+1
, B
M(Sk)

};
14 end

The Objective: Reputation is commonly employed as a
metric to reflect the quality of workers in FL [36], e.g.,
their exerted efforts and the quality of their datasets. The
reputation of workers can be calculated through historical
task performance [9], [21]. Given that vi is the reputation of
worker si and v = {v1, v2, · · · , vn} is the workers’ reputa-
tion profile. Thus, the objective of the designed mechanism
is to maximize the overall reputation of selected workers
max

∑
i→n,j→m

xijvi, which is a standard objective in FL [9],
[13], [21]. Moreover, the proposed mechanism should satisfy
the following properties:

(1) Individual Rationality: The utility of each worker si

is non-negative, i.e., ui
s
(b,M) ⇐ 0 for any b. (2) Truthful-

ness: Bidding the true cost, each worker gets the maximum
utility, i.e., ↔bi, ui

s
(ci,b↑i,M) ⇐ u

i
s
(bi,b↑i,M). (3) Budget

Feasibility: 1) For the cooperative budget setting, the total
payment of requesters does not exceed the total budget B,
i.e.,

∑
1→i→n

pi ↓ B, and 2) for the non-cooperative budget
setting, the total payment of requester aj , ↔j ↓ m, does not
exceed budget Bj , i.e.,

∑
1→i→n

pij ↓ Bj . (4) Computational
Efficiency: The output of the mechanism can be computed
in polynomial time. (5) Approximation: Let ALG(I) be the
obtained reputation of mechanism M with instance I . We com-
pare the output of the mechanism with the optimal achievable
overall reputation when workers’ costs are known in advance.
A mechanism is ε-approximate if →I, ALG(I) ↑ 1

ωOPT (I).

IV. THE COOPERATIVE BUDGET SETTING

In this section, we propose CARE-CO for the cooperative
budget setting. To address the challenge posed by the com-
patibility constraint, we first disregard the requesters’ budgets
and assess the optimal overall reputation for a specific worker
set with bids not exceeding a particular price. Subsequently,
by incrementally increasing the given price, we can identify
a price that maximizes the overall reputation while ensuring
budget feasibility. The detail of CARE-CO is in Algorithm 1.

As a crucial component of CARE-CO, we first introduce
the method to calculate the maximum overall reputation of
selected workers under the compatibility constraint, ignoring
costs and budgets. We sort workers in non-decreasing order of

their bids relative to their reputations, i.e., b1
v1

↓ b2
v2

↓ · · · ↓
bn
vn

. Let Si = {s1, s2, . . . , si} be the worker set containing
the first i workers. Next, we introduce the optimal overall
reputation computation problem (ORP) for the worker set Si.

Definition 1 (Sub-problem ORP). Given a worker set Si, then

ORP(Si): max
∑

t↑i,j↑m

vtxtj (1)

s.t.,

∑

st↓Gl

xtj ↓ ωlj , →j ↓ m, l ↓ L; (2)

∑

j↑m

xtj ↓ 1, →t ↓ i; (3)

xtj ↔ {0, 1}, →t ↓ i, j ↓ m; (4)

where (2) indicates compatibility constraints and (3) means
that each worker can only be assigned to at most one re-
quester2. Let M(Si) denote the optimal value of ORP(Si).

Then, we are ready to introduce CARE-CO. We start from
the first worker and find the key worker sk such that bk

vk
·

M(Sk) ↓ B and bk+1

vk+1
·M(Sk+1) > B. In the optimal solution

of ORP(Sk), if xi =
∑

j→m
xij = 1, then si ↘ Sw. The

payment of each worker is pij = vi · xij min{ bk+1

vk+1
,

B

M(Sk)
}.

Next, we prove the theoretical guarantees of CARE-CO.

Theorem 1. CARE-CO guarantees individual rationality,
truthfulness, budget feasibility and computational efficiency,
and achieves a (2 + vmax

vmin
)-approximation where vmax :=

maxi→n vi and vmin := mini→n vi.

Proof Sketch. (1) Individual rationality: For each winner si ↘
Sw, we have pi = vi · min{ bk+1

vk+1
,

B

M(Sk)
} ⇐ vi · bi

vi
, which

indicates that si’ utility is pi ≃ bi ⇐ 0.
(2) Budget feasibility: The total payment to the winner is

min{ bk+1

vk+1
,

B

M(Sk)
} ·

∑
si↓Sw

vi ↓ B

M(Sk)
· M(Sk) = B.

(3) Computational efficiency: The running time of CARE-
CO is dominated by the loop in computing the optimal
reputation ORP(Si) in the given worker set (line 4-7) As ORP
problem can be converted to the Max-Flow problem, the final
total complexity of O(MN(N + L)(ML+ 2N)).

(4) Truthfulness: We leverage the famous Monotone The-
orem [37] to prove truthfulness, which shows that truthful
mechanisms satisfy monotonicity and workers are paid thresh-
old payments. Monotonicity means that when the selected
worker reports a lower cost, the worker remains selected.
Threshold payments guarantee that if a worker reports a cost
higher than the threshold payment, this worker will not be
selected.

i) Monotonicity: For any worker si ↘ Sw, if si decreases
their bid to b

↔
i
< ci, we prove that worker si will still be

selected. Thus, CARE-CO satisfies monotonicity. ii) Threshold
payments: According to the relationship between B

M(Sk)
and

bk+1

vk+1
in the payment pi, we consider two cases: B

M(Sk)
↓ bk+1

vk+1

and bk+1

vk+1
<

B

M(Sk)
. Then, we prove that any winner bidding a

2Note that all integer programs introduced in this paper can be solved in
polynomial time by converting it to the Max-Flow problem.



cost higher than the threshold payment in both two cases will
not obtain a higher utility. Therefore, CARE-CO guarantees
truthfulness.

(5) Approximation ratio: Let ALGg, OPTg denote the
procured reputation of CARE-CO and the optimal solution,
respectively. We divide workers into two groups: workers
before sk+1 and workers after sk. For the workers before sk+1,
the optimal solution can achieve at most M(Sk) = ALGg

reputation with cost zero. For the workers after sk, the optimal
solution can obtain at most M(Sk+1) reputation under the
budget constraint. Then, we prove that M(Sk+1)≃M(Sk) ↓
vk+1. Thus, we have OPTg ↓ M(Sk) + M(Sk+1) ↓
2M(Sk) + vk+1, which implies OPTg

ALGg
↓ 2M(Sk)+vk+1

M(Sk)
↓

2 + vmax
vmin

.

V. THE NON-COOPERATIVE BUDGET SETTING

In this section, we further propose CARE-NO to address
the non-cooperative budget setting. Two key questions arise:
(1) How can we measure requesters’ employability (i.e., the
reputation they can obtain from workers) on varying budgets
to ensure budget feasibility? (2) Given the varying employ-
ability of requesters, how can we efficiently assign workers
to requesters under compatibility constraints and determine
appropriate payments while ensuring truthfulness.

To address these two critical questions, we first introduce a
virtual-price based sub-mechanism called PEA, which serves
as a core component of CARE-NO. PEA treats all workers
as having the same reputation. Specially, PEA introduces a
non-trivial concept of virtual price, which helps to understand
each requester’s employability. By Utilizing the virtual price
and the requester’s employability, PEA employs an integer
program to assign workers under the compatibility constraint
and identifies a critical price that ensures both efficiency and
truthfulness. Subsequently, we introduce CARE-NO, which
divides all workers into multiple sets, ensuring that each set of
workers has similar reputations, and applies PEA to address
each worker set separately. Detailed explanations of PEA and
CARE-NO are provided in Section V-A and V-B, respectively.

A. Design of PEA
We first consider the scenario that all workers have the same

reputations and propose PEA (detailed in Algorithm 2) to hire
as many as possible number of workers for requesters.

a) Virtual price set: We first introduce the concept of
virtual price which determines the maximum employable
number of workers for requesters under budget constraints.
We sort all workers in the non-decreasing order of their bids,
i.e., b1 ↓ b2 ↓ · · · ↓ bn, and assign a weight wi = 2i

to worker si. Let W = {w1, ..., wn} denote the weight
profile of the workers. For each requester aj , the employable
number of workers falls within the range [1, n]. Denote by
Bj

t
the maximum price at which requester aj can hire t

workers. Then, we can use the set of prices {Bj

t
}t→n to

differentiate the employability of the requester aj . We define
the virtual price set Rb = {Bj

t
}↗j→m,t→n to save these prices

from all requesters. Specially, we define E(r) =
∑

j→m
⇒Bj

r
⇑

Algorithm 2: PEA (B, b, A,G)
Output: P, Sw

1 P ↑ 0, Sw ↑ ↓;
2 Sort all workers as b1 ↔ b2 ↔ · · · bn;
3 wi ↑ 2i, ↘i ↔ n;
4 Generate the virtual price Rb;
5 for r ≃ Rb do
6 Compute Mf (r) by Eq. (5) - (9);
7 end
8 Find r→ ≃ argminr↓Rb

{E(r) = Mf (r)};
9 Candidate worker set is S(r→);

10 // Winner selection;
11 Compute the allocation by Eq. (10) - (15) with worker set S(r→);
12 If xi =

∑
j↑m xij = 1, si ≃ Sw;

13 Selected workers perform training tasks for requesters;
14 // Payment Scheme;
15 for si ≃ Sw do
16 for bl ⇐ bi do
17 Run PEA(B,b↔

bl
, S,G);

18 if si is still selected as a winner then
19 Pi ↑ Pi ⇒ bl+1;
20 end
21 end
22 pi = min{r→,maxb↓Pi

{b}};
23 end

as the requesters’ employability under price r ↘ Rb. Let
S(r) = {si|bi ↓ r} represent the available worker set with
bids no higher than r.

b) Optimal worker selection problem (OSP): Utilizing
virtual prices and the requester’s employability, we next define
the problem of computing the maximum number of selected
workers under compatibility constraints at a given price.

Definition 2 (Sub-problem OSP). Given ↔r ↘ Rb, requesters’
employability E(r) and the available worker set S(r), then

OSP(r): max
∑

st↓S(r),j↑m

xtj (5)

s.t.

∑

st↓Gl↗S(r)

xtj ↓ ωlj , →j ↓ m, l ↓ L; (6)

∑

j↑m

xtj ↓ 1, →st ↔ S(r); (7)

xtj ↔ {0, 1}, →st ↔ S(r), j ↓ m; (8)
∑

st↓S(r)

xtj ↓ ↗Bj

r
↘, →j ↓ m; (9)

where (9) indicates that the number of workers allocated to
each requester cannot exceed their employment ability at price
r. Denote by Mf (r) the maximum value of OSP(r). Fig.
2 illustrates the employability under price set Rb and the
corresponding values of OSP(r).

c) Winner selection and payment scheme: Given the
solution of OSP problem, we can find the minimum price
r
↘ ↘ Rb, namely the critical price, such that the maximum

number of allocated workers equals requesters’ employability,
i.e., r↘ ↘ argminr↓Rb{E(r) = Mf (r)}. We use r

↘
≃ and r

↘
⇐ to

denote the left and right adjacent prices of r↘ in Rb. Suppose
that sk is the last worker with a cost no higher than r

↘.
Winner Selection: To ensure that any winner remains

selected after bidding a lower cost (as shown in Lemma 1),
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Fig. 2: The maximum employable worker curves under the
price set Rb, where the black lines represent requesters’
employability and the blue star represents the value of Mf (r).

which is crucial to guarantee the truthfulness of workers, we
should choose a specific set of winners from worker set S(r↘).
Particularly, we use the following integer program to select
winners with the minimum sum of weights such that the total
number of selected workers is still Mf (r↘), i.e.,

min
∑

i↑k,j↑m

wixij (10)

s.t.

∑

si↓Gl

xij ↓ ωlj , →j ↓ m, l ↓ L (11)

∑

j↑m

xij ↓ 1, →i ↓ n (12)

∑

i↑n

xij ↓ ↗Bj

r→
↘, →j ↓ m (13)

∑

i↑k,j↑m

xij = Mf (r
→) (14)

xij ↔ {0, 1}, →i ↓ k, j ↓ m (15)

where (13) indicates that the number of workers selected for
each requester cannot exceed their employment ability at the
price r

↘ and (14) means that we choose Mf (r↘) items. Note
that there is only one optimal solution to Eq. (10) since the
weight of si is 2i. If xi =

∑
j→m

xij = 1, ↔i ↓ k, then
si ↘ Sw.

Payment Scheme: The intuition behind the payment
scheme is to determine the maximum bid that the winner
si can report while ensuring their status as a winner. For
every winner si ↘ Sw, assume that si bids to the l-th
position in the worker order, i.e., bidding a higher cost
b
↔
i
= bl > bi, ↔1 ↓ l < n, resulting in si becoming the

new l-th worker in the new worker order b↔
bl

, i.e., b↔
bl

=
{b1, · · · , bi↑1, bi+1, · · · , bl, b↔i, bl+1, · · · , bnh}. Then, we run
PEA(B,b↔

bl
, S,G) with input b↔

bl
for every bl ⇐ bi. If si is

still selected under the false cost b
↔
i
= bl, then add bl+1 to

the candidate bid set, denoted by Pi. Finally, the payment of
si ↘ Sw is pi = min{r↘,maxb↓Pi{b}}.

Next, we analyze the theoretical performance of PEA.

Theorem 2. PEA guarantees individual rationality,
budget feasibility, and computational efficiency,
and achieves a (2ϑ + 1)-approximation where
ϑ = min{m,maxl→L,j→m{⇓|Gl|/ωlj⇔}.

!⋯# + %## − %⋯' + (' + )' + %'⋯%Order Index
2!⋯2"#$2"2"%$⋯2&#'2&#(2&#$2&⋯2$weights
#!⋯#"#$#"#"%$⋯#&#'#&#(#&#$#&⋯#$Bids
#!⋯#"#$#"%$#"%(⋯#&#(#&#$#"′#&⋯#$Bids (%) bids lower)

&*+,-.: Workers’ weights
remain unchanged.

&*)#+,/.: Workers’ weights
remain unchanged.

&*-#+,)%+.: Workers’ weights
double.

Fig. 3: k workers’ bids and weights when si bids a false cost.

Before proving truthfulness of PEA, we prove the following
useful lemmas.

Lemma 1. Assume that the winner ↔si ↘ Sw bids a lower
cost b

↔
i
< ci ↓ r

↘. If the new critical price is still r
↘, i.e.,

PEA chooses E(r↘) winners from worker set S(r↘), then si is
still a winner.

Proof. Note that sk is the last worker with the bid no higher
than r

↘. When si bids bi, the order of the first k workers’
bids should be b1 ↓ b2 ↓ b3 ↓ · · · bk, and the corresponding
weight of the worker st for every t ↓ k is wt = 2t. Based on
the value of b↔

i
, we consider two cases:

Case 1: If bi↑1 < b
↔
i
↓ bi+1, ↔2 ↓ i ↓ k or b

↔
i
↓ b2, i = 1,

then si remains the i-th worker and the weight is still 2i.
According to the computation of Eq. (10) with the input
worker set S(r↘) = {s1, s2, ..., sk}, si is still a winner.

Case 2: If bl < b
↔
i
↓ bl+1, ↔l ↓ i ≃ 2, i ↓ k, then si

will be the (l + 1)-th worker with a new weight 2l+1
< 2i.

Let w↔
t
, ↔t ↓ k, and S

↔
w

be the new weight of worker st and
the new winner set after si bids a lower bid, respectively.
As shown in Fig. 3, we can divide the workers except
si into three groups: S<1,l> = {s1, ..., sl}, S<l+1,i↑1> =
{sl+1, ..., si↑1}, S<i+1,k> = {si+1, ..., sk}. We can find that
the weights of the workers in S<1,l> and S<i+1,k> remain
unchanged, whereas the weights of the workers in S<l+1,i↑1>

double, i.e., w
↔
t
= 2wt, ↔l + 1 ↓ t ↓ i ≃ 1. Let Sw(r↘)

denote the set that contains all possible sets of winners
computed by Eq. (5) with price r

↘ and Sw ↘ Sw(r↘). Thus,∑
st↓Sw

wt = minS↓Sw(r→)

∑
st↓S

wt since Sw is the final
winner set.

Assume that si is not selected as a winner after bidding at a
lower cost, i.e., S↔

w
↑ {si} = ↖. Then, we have

∑
st↓S↑

w
w

↔
t
⇐∑

st↓S↑
w
wt since w

↔
t
⇐ wt, ↔t ↓ k, t ↙= i. Thus,

∑

st↓S↑
w

w↔
t ⇐

∑

st↓S↑
w

wt ⇐
∑

st↓Sw

wt, (16)

where the last inequality holds because Sw is the winning
set with the smallest sum of weights. Let S

i↑1
l+1 and <

i1, i2, ..., i|Si↓1
l+1 |

> denote the set of winners selected from
set S<l+1,i↑1> when si bids the true cost and the sequence
of indexes of these workers, respectively. Then, we have

∑

st↓Si↓1
l+1↗{si}

w↔
t = 2l+1 + 2(wi1 + wi2 + · · ·+ wi

|Si↓1
l+1

|
)

↔ 2l+1 + (wi2 + · · ·+ wi
|Si↓1

l+1
|
+ 2i)

↔ wi + wi1 + · · ·+ wi
|Si↓1

l+1
|
=

∑

st↓Si↓1
l+1↗{si}

wt.



Consequently, we can have
∑

st↓Sw
wt ⇐

∑
st↓Sw

w
↔
t
. If∑

st↓Sw
wt =

∑
st↓Sw

w
↔
t
, then Sw remains the winner set

and si is a winner, leading to the contradiction that si is not
selected. If

∑
st↓Sw

wt >
∑

st↓Sw
w

↔
t
, by combining Eq. (16),

we can conclude that
∑

st↓S↑
w
w

↔
t
>

∑
st↓Sw

w
↔
t
. This suggests

that, when worker si bids a lower cost, we should choose set
Sw in order to obtain a smaller sum of weights compared with
S
↔
w

, which leads to the contradiction. Therefore, combining the
above cases, this lemma holds.

Lemma 2. ↔r1, r2 ↘ Rb, r
↘ ↓ r1 < r2, we have Mf (r) =

E(r), ↔r ↘ {r1, r2} and Mf (r1) > Mf (r2).

Proof. Based on the definition of price set Rb, E(r1) > E(r2).
As r

↘ is the critical price, we have Mf (r↘) = E(r↘). For
every price r ↘ Rb and r > r

↘, we have S(r↘) → S(r),
and we can therefore assign E(r) workers to requesters as the
mechanism can assign Mf (r↘) workers to requesters where
Mf (r↘) = E(r↘) > E(r). Thus, we have Mf (r1) = E(r1) >
Mf (r2) = E(r2).

Lemma 3. Given ↔r ↘ Rb and the corresponding set of
workers S(r), if we remove any worker st ↘ S(r), then the
new value Mf (r)↔ satisfies Mf (r)↔ ⇐ Mf (r)≃ 1.

Proof. Let Sw(r) denote the selected workers of Mf (r), and
we have S(r)↔ = S(r) \ {st}. If st ↘ Sw(r), then we can still
choose Sw(r)\{st} that satisfies the compatibility constraints
in Eq. (5), which implies Mf (r)↔ = |Sw(r)\{st}| = Mf (r)≃
1. If st /↘ Sw(r), then Mf (r)↔ = Mf (r).

Theorem 3. PEA guarantees truthfulness.

Proof. We still leverage the famous Monotone Theorem [37]
so that we can prove the mechanisms to be truthful. Monotone
Theorem shows that truthful mechanisms satisfy monotonicity
and workers are paid threshold payments.

Monotonicity: Based on the definition of the price set Rb,
the value of E(r), ↔r ↘ Rb, remains unchanged if any worker
reports a false cost. If worker si reports a lower cost b↔

i
↓ r

↔ ↘
Rb and b

↔
i
< ci where r

↔ ↓ r
↘, we consider two cases: (1) If

the new critical price remains r
↘, si maintains its status as

the winner according to Lemma 1. (2) If the new critical price
decreases to r

↔ ↘ Rb where r
↔
< r

↘: Let S(r↔)↔ denote the new
set of workers with costs no higher than r

↔ after si reports a
false cost. Note that S(r↔)↔ = S(r↔) ↗ {si}. We have E(r↔) =
Mf (r↔)↔ as r

↔ is the new critical price, and Mf (r↔) < E(r↔)
as the critical price is r

↘ when si does not report a false cost.
Thus, si will also be selected as a winner. Otherwise, we must
have Mf (r↔) = Mf (r↔)↔ due to S(r↔)↔ = S(r↔)↗ {si}. Thus,
Mf (r↔)↔ < E(r↔) since Mf (r↔) < E(r↔).

Threshold payments: Recall that the payment of si is pi =
min{r↘,maxb↓Pi{b}}. According to the relationship between
r
↘ and maxb↓Pi{b}, we consider the following two cases:

Case 1 pi = r
↘: When si bids a higher cost r

↘
< b

↔
i
,

we consider two subcase: Subcase 1 Mf (r↘)↔ < E(r↘): we
have S(r↘)↔ = S(r↘) \ {si}, and we should choose a higher
price r

↘↔
> r

↘ as the new critical price. As r
↘ is the critical

price, we have Mf (r↘) > Mf (r↘↔) according to Lemma 2.

If r
↘↔

< b
↔
i
, PEA selects the winners from the workers with

a cost at most r
↘↔, resulting in si not being selected as the

winner. If r
↘↔ ⇐ b

↔
i
, then it follows that S(r↘↔)↔ = S(r↘↔).

As proven in Lemma 3, Mf (r↘)↔ ⇐ Mf (r↘) ≃ 1, thus we
have Mf (r↘)↔ ⇐ Mf (r↘) ≃ 1 ⇐ Mf (r↘↔) = Mf (r↘↔)↔

which means that we can choose Mf (r↘↔)↔ workers from
the set S(r↘)↔. Let wS(r→)↑ represent the maximum weight
among the workers in S(r↘)↔. Since si bids higher than r

↘,
the weight of si will be at least 2wS(r→)↑ . Consequently, si will
not be selected since we can select a minimum of Mf (r↘↔)↔

workers from the set S(r↘)↔ whose total weight is smaller than
2wS(r→)↑ . Subcase 2 Mf (r↘)↔ = E(r↘): the threshold price is
still r↘, and we will choose winners from workers with costs
no higher than r

↘, then si will not be selected.
Case 2 pi = maxb↓Pi{b}: If si bids a higher cost pi =

maxb↓Pi{b} < b
↔
i
↓ r

↘, according to the definition of Pi, the
worker si will not be selected as the winner. When si bids a
higher cost b

↔
i
> r

↘, by Case 1, worker si will also not be
selected as a winner.

Therefore, by applying Myerson’s theorem, PEA guarantees
truthfulness.

B. Design of CARE-NO
Given the PEA sub-mechanism, we are ready to introduce

CARE-NO. Intuitively, we divide all workers into multiple
sets so that each set of workers has similar reputations. This
way, we can treat each set of workers as having the same
reputation and call PEA to address each worker set. In detail,
let ϖi = vi

vmin
⇐ 1 represent the virtual reputation of si, and

ϖmax := maxi→n ϖi. We divide all workers in S into ϱ =
⇓logω ϖmax⇔ sets D = {D1, ..., Dε} by their virtual reputations
and ς > 1 is an appropriate predetermined parameter, i.e.,

D(si) =
{
Dh, if vi ≃ (ωh↘1, ωh], 1 ↔ h ↔ ε
D1, ϑi = 1,

(17)

where D(si) refers to the set to which worker si is selected.
Specifically, workers with virtual reputation 1 are assigned
to the set D1. Then, we view that each worker in the same
set owns the same reputation and call PEA to deal with the
workers in the same set. Denote by S

h
w

and Ph the winners
and the corresponding payment returned by PEA on set Dh,
i.e., (Ph, S

h
w
) = PEA(B, b, Dh,G). Finally, we sample one

of the outputs from all sets with probability 1
ε

as the final
solution.

Theorem 4. CARE-NO guarantees individual rationality,
truthfulness, budget feasibility, and computational efficiency,
and achieves (2ϑ+ 1)ςϱ-approximation in expectation where
ϑ = min{m,maxl→L,j→m{⇓|Gl|/ωlj⇔} and ϱ = ⇓logω ϖmax⇔.

VI. EXPERIMENT

A. Experimental Settings
1) Setup: To vary the quality of different workers and

subsequently their reputation, we consider the noise label
datasets [38]: part of the worker data samples are incorrectly
labeled, and the data accuracy rate and cost range for workers
are presented in Table I. Before starting the experiment,



TABLE I: Bid Ranges w.r.t. Data Accuracy Rates.

Data accuracy rate [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]

Bid range [2, 4] [3, 5] [4, 6]

the costs are randomly generated within their corresponding
cost range. In addition, we first conduct 10 training tasks to
calculate the reputations of workers using the method in [9].
We randomly assign the budget of each requester within the
range [40, 80]. Furthermore, ωlj is randomly assigned within
the range [1, |Gl|], and we set ς = 10 for CARE-NO. A
total of 120 workers are established in FL. To demonstrate the
influence of the number of requesters m, we fix the number
of groups at 10 and vary the number of requesters from 2 to
12 in increments of 2. Similarly, to evaluate the impact of the
number of groups L, we fix the number of requesters at 5 and
vary the number of groups from 4 to 24 in increments of 4.
All workers are randomly assigned to groups.

2) Datasets and Models: To validate the performance of the
proposed mechanisms, we consider the task on two commonly
adopted datasets: Fashion MNIST (FMNIST) and CIFAR-10.
For FMNIST, we adopt a three-layer neural network [9], while
for CIFAR-10, we use a CNN with three convolutional layers,
followed by a maximum-pooling layer and two fully connected
layers [39]. For each dataset, each worker is provided with
a training set of size 2000, while the requesters have test
and validation datasets of size 2000 each. Individual data is
randomly drawn from the corresponding dataset.

3) Benchmarks: Because no prior work has considered our
challenging settings, we compare the proposed mechanisms
with the following two reasonable benchmarks. (1) RRAFL:
The most relevant mechanism from [9], which focuses only on
a single requester. We extend it to handle multiple requesters
and groups of workers by assuming a virtual sum of requester
budgets and randomly assigning winners to requesters without
compatibility violation. (2) RanPri: A simple pricing mech-
anism that sets a random price within the cost range for
each worker. If the price is at least equal to the worker’s
cost, the worker is selected as a winner and assigned to a
random requester with sufficient remaining budget, ensuring
no compatibility violations.

4) Metrics: We evaluate these mechanisms using
the following two metrics: (1) Overall Reputation:∑

i→n

∑
j→m

xijvi, which is the objective of our proposed
mechanisms; (2) Average Global Accuracy: the average global
model accuracy of requesters, i.e., 1

m

∑
j→m

qi where qi is
the global model accuracy of requester aj .

B. Experimental Results

1) Overall Reputation of Selected Workers: Fig. 4 presents
the overall reputation of the proposed mechanisms for different
numbers of requesters and groups. Specifically, Figs. 4a, 4b
and Figs. 4c, 4d show the results on FMNIST and CIFAR-
10, respectively. Firstly, we observe that our proposed mech-
anisms, CARE-CO and CARE-NO, consistently outperform

RRAFL and RanPri. In particular, the overall reputation of
CARE-CO is significantly higher, with average improvements
of 3 and 15 times compared to RRAFL and RanPri, re-
spectively. Similarly, the overall reputation of CARE-NO has
improved by factors of 2 and 12, respectively, compared
to RRAFL and RanPri. The superior performance of our
proposed mechanisms can be attributed to their consideration
of worker cost-efficiency (i.e., bids relative to reputations) and
their ability to efficiently allocate the budget to select more
efficient workers while accommodating worker compatibility.
In contrast, RRAFL and RanPri struggle to allocate workers
effectively in the presence of multiple budgets and worker
compatibility. Secondly, we consistently find that the overall
reputation of CARE-CO exceeds that of CARE-NO. This
aligns with the intuitive understanding that sharing the budget
can facilitate the hiring of more high-quality workers, thereby
enhancing the overall reputation attained by requesters. Lastly,
our proposed mechanisms demonstrate a stable increase in
overall reputation as the number of groups increases. This can
be attributed to the fact that a higher number of groups indi-
cates a lower level of incompatibilities among workers, which
in turn contributes to achieving a higher overall reputation.

2) Average Global Accuracy of Requesters: To validate
the effectiveness of our proposed mechanisms, which not
only exhibit high overall reputation efficiency but also im-
prove model accuracy, we present the performance of average
global accuracy for requesters as follows. Table II shows
the impact of the number of requesters and groups on the
average global accuracy for both FMNIST and CIFAR-10.
Firstly, it is evident that the proposed mechanisms, CARE-CO
and CARE-NO, consistently outperform RRAFL and RanPri.
Specifically, the average accuracy of CARE-CO is 32.21% and
84.49% higher than that of RRAFL and RanPri on average,
respectively. Similarly, the average accuracy of CARE-NO
is 28.70% and 83.89% higher than that of RRAFL and
RanPri on average, respectively. Secondly, it is worth noting
that the improvement in accuracy achieved by our proposed
mechanisms is not as significant as the improvement in overall
reputation. This is because achieving higher accuracy requires
the participation of more high-quality workers. Nevertheless,
both CARE-CO and CARE-NO are capable of achieving
significantly better average accuracy due to their considerably
higher reputation. Lastly, we observe a slight decrease in
average accuracy with an increasing number of requesters.
This can be attributed to the fact that as the number of
requesters increases, the number of workers allocated to each
requester may slightly decrease, resulting in a decrease in
average accuracy. Moreover, the overall average accuracy of
our proposed mechanisms increases as the number of groups
increases. The reason is that our proposed mechanisms can
attain higher reputation in the presence of a lower level of
incompatibilities among workers (i.e., a larger number of
groups), which in turn contributes to achieving higher model
accuracy for the requesters.

3) Accuracy on Non-IID Label Distribution: In the previ-
ous experiments, we have considered the performance of the



(a) #requesters for FMNIST (b) #groups for FMNIST (c) #requesters for CIFAR-10 (d) #groups for CIFAR-10

Fig. 4: The overall reputation of selected workers, with solid lines representing the reputation in the cooperative budget setting
and dashed lines representing the reputation in the non-cooperative budget setting.

TABLE II: The Performance of the Average Global Accuracy

Cooperative Non-cooperative Cooperative Non-cooperative

# Req. CARE-CO RPAFL RanPri CARE-NO RPAFL RanPri # Group CARE-CO RPAFL RanPri CARE-NO RPAFL RanPri

FMN-
IST

2 0.797 0.796 0.588 0.775 0.759 0.653 4 0.784 0.571 0.573 0.779 0.664 0.570
4 0.795 0.694 0.542 0.787 0.742 0.551 8 0.781 0.612 0.513 0.782 0.599 0.494
6 0.786 0.654 0.519 0.779 0.653 0.531 12 0.787 0.648 0.509 0.785 0.621 0.507
8 0.790 0.504 0.516 0.782 0.657 0.488 16 0.789 0.620 0.547 0.782 0.627 0.493
10 0.782 0.691 0.559 0.781 0.621 0.501 20 0.798 0.683 0.564 0.785 0.638 0.553
12 0.789 0.560 0.507 0.781 0.568 0.507 24 0.797 0.741 0.537 0.793 0.670 0.535

CIFA
-R10

2 0.546 0.422 0.296 0.537 0.477 0.243 4 0.549 0.340 0.246 0.533 0.340 0.249
4 0.553 0.431 0.211 0.518 0.427 0.235 8 0.548 0.355 0.263 0.536 0.392 0.258
6 0.543 0.398 0.227 0.508 0.375 0.219 12 0.559 0.391 0.250 0.555 0.357 0.251
8 0.539 0.375 0.354 0.511 0.368 0.249 16 0.555 0.378 0.221 0.558 0.444 0.240
10 0.533 0.373 0.233 0.538 0.364 0.237 20 0.551 0.460 0.239 0.553 0.421 0.276
12 0.523 0.316 0.232 0.514 0.341 0.238 24 0.556 0.473 0.233 0.559 0.444 0.234

(a) FMNIST (b) CIFAR-10
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Fig. 5: The average global accuracy of the proposed mecha-
nisms under non-IID label distribution datasets.

proposed mechanisms in noisy label datasets where noise was
added to create incorrect samples. In order to further validate
the robustness and efficiency of our proposed mechanisms,
we also compare the average global model accuracy with
baselines on non-IID label distribution datasets [40], i.e., the
sample labels in the dataset of the workers are non-uniformly
distributed. Fig. 5 illustrates the average accuracies of the
proposed mechanisms in the FMNIST and CIFAR-10 datasets.
We observe that the average global model accuracies of the
proposed mechanisms decrease by only 4.25% and 3.75% on
average compared to the accuracy obtained in Section VI-B2
for the FMNIST and CIFAR-10 datasets, respectively. This
further validates the robustness of our proposed mechanisms
on non-IID label distribution datasets. Furthermore, our pro-

posed mechanisms continue to significantly outperform the
baseline mechanisms in non-IID label distribution datasets.
Specifically, CARE-CO shows an improvement of 24.01%
and 61.13% compared to RRAFL and RanPri, respectively, in
terms of average accuracy. Similarly, CARE-NO demonstrates
an improvement of 21.28% and 59.33% compared to RRAFL
and RanPri, respectively.

VII. CONCLUSION

In this paper, we consider compatibility-aware incentive
mechanisms for incompatible workers in FL, where multiple
requesters with budgets want to procure training services from
groups of workers. For the cooperative budget setting, we
propose CARE-CO, which leverages the Max-Flow solution
to find feasible allocations under the compatibility constraint.
Then, we propose CARE-NO for non-cooperative budget
setting, which divides all workers into multiple sets and
introduces a sub-mechanism PEA to address each worker set
separately. In particular, PEA uses virtual prices to evaluate
requesters’ ability to obtain reputation and determines the
critical price that aligns with their ability to ensure both budget
feasibility and truthfulness. The proposed mechanisms can en-
sure individual rationality, budget feasibility, truthfulness, and
approximation guarantee. Experimental results in real-world
datasets, FMNIST and CIFAR-10, validate that our proposed
mechanisms significantly outperform baseline mechanisms in
terms of the overall reputation of selected workers and the
average global accuracy.
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