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Abstract. The rapid use of smartphones and devices leads to the devel-
opment of crowdsensing (CS) systems where a large crowd of partici-
pants can take part in performing data collecting tasks in large-scale
distributed networks. Participants/users in such systems are usually self-
ish and have private information, such as costs and identities. Budget-
feasible mechanism design, as a sub-field of auction theory, is a useful
paradigm for crowdsensing, which naturally formulates the procurement
scenario with buyers’ budgets being considered and allows the users to
bid their private costs. Although the bidding behavior is well-regulated,
budget-feasible mechanisms are still vulnerable to the Sybil attack where
users may generate multiple fake identities to manipulate the system.
Thus, it is vital to provide Sybil-proof budget-feasible mechanisms for
crowdsensing. In this paper, we design a budget-feasible incentive mecha-
nism which can guarantee truthfulness and deter Sybil attack. We prove
that the proposed mechanism achieves individual rationality, truthful-
ness, budget feasibility, and Sybil-proofness. Extensive simulation results
further validate the efficiency of the proposed mechanism.

Keywords: Crowdsensing · Budget feasibility · Sybil-proofness ·
Mechanism design · Auction

1 Introduction

The proliferation of smart mobile devices, such as phones, tablets and smart-
watch, which are installed with rich sensors (e.g., camera, light sensor, and GPS),
has made crowdsensing a new popular economic paradigm which provides the
crowd of users with mobile devices chances accomplishing large-scale distributed
tasks, like collecting and sharing environmental information. Crowdsensing (CS)
systems usually consists of a platform and a collection of users. The platform
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acts as a data requester who posts a set of tasks need to be finished and smart-
phone users provide services by performing assigned tasks. Applications like
reCAPTCHA [18], Amazon Mechanical Turks (AMT) and oDesk have made it
possible to exploit human resources solving crowdsensing problems.

Most of smartphone users are not voluntary to work on the tasks since they
consume their own resources, e.g., battery, computing power, time, cellular data
traffic, and expose private information with potential privacy. Furthermore, the
system can be more effective with more users’ participation. Thus a good incen-
tive mechanism is vitally important to stimulate users to contribute to the plat-
form. Many works [5,9,21,25] model the crowdsourcing/crowdsensing problems
as reverse auctions where the requester works as a buyer and the users act as
service sellers who bid for performing tasks. Users achieve monetary reward
after submitting results of assigned tasks. Auction-based systems often face the
strategic scenario where the participants may take strategic behaviors to obtain
more utilities, e.g., bidding false private information. Sufficient works thus make
the effort to design truthful mechanisms so that users have no incentive to bid
dishonestly [4–6,8,12,15,20,21,25]. Apart from false bidding behaviors, there is
another kind of strategic behavior called Sybil attack, also known as false-name
attack, that users may generate fake identities to manipulate the system for more
utilities. The detection methods for Sybil attack have been considered in various
research areas such as combinatorial auctions [16,17,24], spectrum auctions [19],
and social networks [2]. Unfortunately, Lin et al. [10] show that many existing
truthful mechanisms in crowdsourcing are vulnerable to Sybil attack, e.g., by
taking Sybil attack, users in [5,25] can increase her payment by reporting false
information, and the user in [27] can change from a loser to a winner with a pos-
itive utility. Lin et al. [10] and Zhang et al. [26] are the first to propose incentive
mechanisms guaranteeing truthfulness and Sybil-proofness in the auction-based
crowdsourcing systems.

However, in the procurement scenario, the requester often comes with budget
and the designed procurement mechanism should satisfy the budget constraint
that the total payment from the requester cannot exceed a given budget. The
goal of requester in this scenario is to maximize total value of assigned tasks
finished by users within the budget constraint. This problem falls into research
of budget-feasible mechanism design problem first studied in [13] which proposes
the first budget-feasible truthful mechanism in the procurement scenarios. After
that, many works [1,7,14,28] extend the budget-feasible mechanism design into
the crowdsourcing systems. Although the truthfulness/bidding behavior is well
regulated in these mechanisms, budget-feasible mechanisms in crowdsourcing
systems yet consider the Sybil-proofness and are still vulnerable to Sybil attack
of users. And existing Sybil-proof mechanisms proposed for the auction-based
systems [10,26] also cannot be applied to the procurement scenario as an unlim-
ited payment is even allowed if necessary to elicit the incentive behaviors.

Therefore, in this paper, we focus on designing a budget-feasible Sybil-proof
mechanism for CS systems to deter the untruthful bidding behaviors and Sybil
attack. The designed mechanism should guarantee various desired properties
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like, individual rationality that the payment to each seller covers at least (but
not necessarily equals) her private cost, budget feasibility that the total payment
of the requester does not exceed her budget, truthfulness that no sellers have
incentive to bid dishonestly, and Sybil-proofness that users cannot increase their
utilities by launching Sybil attack. The main contributions of this paper are as
follows:

(1) We are the first to address Sybil attack in procurement scenarios for CSs,
and propose a corresponding budget-feasible Sybil-proof mechanism, which
moves a step forward to robust budget-feasible mechanisms in crowdsensing.

(2) We design a Mechanism TBS (Truthful Budget-feasible and Sybil-proof
mechanism) and prove that the proposed mechanism achieves computational
efficiency, individual rationality, truthfulness, budget feasibility and Sybil-
proofness.

(3) We evaluate the performance and validate the desired properties by exten-
sive simulations. Furthermore, it shows that the proposed mechanism spends
less when procuring fixed value from users than previous Sybil-proof mech-
anisms, while ensuring the budget feasibility.

The rest of paper is organized as follows. In Sect. 2, we briefly review the
works in truthful auctions, budget-feasible mechanisms in crowdsensing and
Sybil-proof mechanisms. In Sect. 3, we introduce the system model and problem
formulation. We discuss the vulnerability to Sybil attack in traditional budget-
feasible mechanisms in Sect. 4. In Sect. 5, we propose a mechanism TBS and
prove the desired properties. The performance evaluation is presented in Sect. 6.
Finally, we conclude this paper in Sect. 7.

2 Related Work

Many works consider incentive mechanisms in crowdsensing/crowdsourcing sys-
tems. Yang et al. [21] compute the unique Stackelberg Equilibrium for the
platform-centric crowdsensing model and designed truthful mechanism for the
user-centric crowdsourcing model. Feng et al. [5] further take the location infor-
mation into consideration when assigning sensing tasks to smartphones. Zhang
et al. [25] study three models of crowdsourcing which consider the cooperation
and competition among the service and propose incentive mechanisms for each
of them. Zhu et al. [29] design incentive mechanisms based on the combina-
tion of a reverse auction and a Vickrey auction to address malicious competition
behavior in price bidding. Huang et al. [8] design a truthful double auction mech-
anism which takes max-min fairness into consideration. Cui et al. [4] propose an
incentive mechanism for task allocation problem in crowdsourcing systems by
designing a bid-independent payment calculation scheme.

Budget-feasible mechanism was first studied in [13] which addresses the
procurement scenarios where buyers have budgets and the payment scheme
should be carefully designed. After that, Singer and Mittal [14] present constant-
competitive truthful mechanisms for maximizing the number of tasks under a
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budget. Some works [7,28] focus on budget-feasible mechanisms in online sce-
nario where users arrive online and the requester wants to select users for maxi-
mizing the value of services under a budget constraint. Singla et al. [15] use the
approach of regret minimization by combining multi-armed bandits to design
budget-feasible mechanisms that achieve near-optimal utility for the requester.

Although Sybil attack has been addressed in some auction scenarios, it has
rarely been studied in budget-feasible mechanisms. For example, Terada and
Yokoo [16] propose a false-name-proof multi-unit auction protocol. The works
[4,17,24] focus on truthful and Sybil-proof mechanisms in combinatorial auc-
tions. Wang et al. [19] design mechanisms that detect Sybil attack in dynamic
spectrum auctions. Brill et al. [2] consider Sybil-proofness for users who may
manipulate the recommendation by performing a false-name manipulation in
social networks. Yao et al. [23] propose a novel Sybil attack detection method
based on Received Signal Strength Indicator (RSSI) for Vehicular Ad Hoc Net-
works (VANETs). For crowdsourcing systems, Lin et al. [10] and Zhang et al.
[26] investigate truthful and Sybil-proof mechanisms in auction-based systems.
However, these mechanisms do not take into account the budget constraints of
requesters, thus cannot be applied to the procurement scenarios in crowdsourcing
systems.

In summary, although the bidding behaviors are well regulated, existing
budget-feasible mechanisms in crowdsourcing systems are still vulnerable to
Sybil attack. Therefore, it is vital to design budget-feasible mechanisms that
are robust in truthfulness and Sybil-proofness.

3 Preliminaries

We consider a crowdsensing system that consists of a platform and n users
denoted by u = {1, 2, . . . , n}. Users may participate in this system to finish
crowdsensing tasks. Denote by Ti the task set user i wants to finish. Let T =⋃

i∈u Ti denote the whole tasks that can be finished by all users. In addition,
each task tl ∈ T has a value vl > 0 to the platform. The platform gains value vl
when task tl is completed.

3.1 Reverse Auction Model

We model the interaction between the platform and users as a reverse auction,
where the platform acts as a requester/buyer and users serve as sellers. We
take into account the procurement scenario in the crowdsensing systems where
the requester wants to procure service from users (sellers) within budget B. We
assume that each user i has a cost function ci(B) to show the cost of finishing
all tasks in a bundle B ⊆ T . Following the assumption in [10], the cost function
ci(·) of user i satisfies the following properties:

– ci(∅) = 0 and ci ({tl}) = ∞,∀tl ∈ T\Ti;
– ci (B′) ≤ ci (B′′) ,∀B′,B′′ ⊆ T with B′ ⊆ B′′;
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– ci(B) ≤ ci (B′) + ci (B′′) ,∀B′,B′′ ⊆ T and B = B′ ∪ B′′.

These four properties characterize the cost of performing tasks in practice.
Meanwhile, we consider the scenario of incomplete information auction where

only user herself knows her private information, e.g., task sets and cost function.
The budget and value function of the requester, as an auctioneer, are com-
mon knowledge. Let (Ti, ci(·)) denote the task-cost pair of each user i. Initially,
all users would bid their costs. In the auction model, we consider the strate-
gic scenario where each user is selfish and rational and she may misreport her
cost for more utilities denoted by c̃i (= ci or her task set denoted by T̃i (= Ti.
Similarly, let (T̃i, c̃i(·)) denote the reported task-cost pair of each user i and
!β = {(T̃1, c̃1), (T̃i, c̃i), · · · , (T̃i, c̃i)} denote the bid profile of all users. Specifi-
cally, denote by !β−i the bid profile of all users except user i.

After receiving the bids from users, the requester/buyer selects a subset of
users uw ⊆ u called winners and assign each winner i ∈ uw a task set Ai = Ti to
finish, and, Ai = ∅ if i /∈ uw. Let !A = (A1, A2, . . . , An) denotes the assignment
profile. To stimulate users to participate in the auction, the platform gives pay-
ment pi to each winner i. Note that pi = 0 if i /∈ uw. Let !p = (p1, p2, . . . , pn)
denote the payment profile. We further consider the budget feasibility on the
buyer’s side which requires that the total payments paid to the sellers cannot
exceed the budget, i.e.,

∑
i∈u pi ≤ B. We assume that each user is willing to per-

form only the whole set Ti following the assumption in [10,22]. We thus define
user i’s utility as the payment minus her cost, i.e.,

ui((T̃i, c̃i(·)), !β−i) =
{
pi − ci(Ti), if Ai = Ti

0, otherwise
(1)

The platform adopts value function V(·) to calculate the total value over a
subset of users. We define the utility of platform as total value procured from
winners, i.e., V(uw), which is the sum of value of all tasks in the union set of
assigned task sets of winners, i.e., ub = V(uw) = V (∪i∈uwTi) =

∑
ti∈∪i∈uwTi

vi,
where function V (·) denotes the sum of value of all tasks in the subset of T . It
is easy to show that the value function V(·) is a monotone submodular function
by the following definition.

Definition 1 (Monotone Submodular Function): Let G be a finite set. For any
X ⊆ Y ⊆ G and x ∈ G, a function f : 2G ← R is called submodular if and only
if f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x}) − f(Y ) and it is monotone (increasing) if
and only if f(X) ≤ f(Y ).

3.2 Sybil Attack

We further consider the Sybil attack where a user could submit multiple fictitious
identities. As a simple case, user i could submit two task-cost pairs (T̃i′ , c̃i′) and
(T̃i′′ , c̃i′′)) under two identities i′ and i′′, respectively. This case is sufficient to
represent the general Sybil attack.
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Assume that user i submits (T̃i′ , c̃i′) and (T̃i′′ , c̃i′′) under two identities i′ and
i′′, where T̃i′ ∪ T̃i′′ = Ti. Let Ai′ and Ai′′ denote the assigned task set for user i′
and i′′, respectively. Similarly, denote by pi′ and pi′′ the corresponding payments
for them. As user i is willing to perform only the whole set Ti, her utility ũi under
Sybil attack will be zero if the union assigned task set among generated identities
is not equal to Ti. Thus, ũi = pi′ + pi′′ − ci (Ti) if Ai′ ∪ Ai′′ = Ti and otherwise
ũi = 0. When ũi > ui, user i has an incentive to conduct Sybil attack.

3.3 Properties

The goal of this paper is to design a budget-feasible and Sybil-proof mechanism
maximizing the utility of platform under the crowdsensing model above and
guaranteeing the following desired properties:

(1) Individual Rationality: Each user i has a non-negative utility when bid-
ding her true task-cost pair, i.e., ui((Ti, ci(·)), !β−i) ≥ 0.

(2) Truthfulness: Reporting true cost function is user i’s dominant strategy,
i.e., ui((Ti, ci(·)), !β−i) ≥ ui((T̃i, c̃i(·)), !β−i).

(3) Budget Feasibility: The total payment cannot exceed the budget of
requester, i.e.,

∑
i∈u pi ≤ B.

(4) Sybil-proofness: Any user’s utility is maximized when bidding her true
task-cost pair using a single identity, i.e., ũi ≤ ui.

(5) Computational Efficiency: The mechanism terminates in polynomial
time.

4 Sybil Attack on Budget-Feasible Mechanisms

In this section, we discuss the vulnerability to Sybil attack in truthful incentive
mechanisms. As discussed in Sect. 2, many existing budget-feasible mechanisms
do not take into account the threat of Sybil attack. Thus, we present a detailed
example showing how Sybil attack increases a dishonest user’s utility.

In budget-feasible mechanisms [3,13], the proportional share allocation rule
is widely used to generate budget-feasible allocations and elicit the truthfulness.
Denoted by mi or mi(S) = V(S ∪ {i}) − V(S) the marginal value of a user i
with respect to set S, users are sorted according to their non-decreasing order of
the cost relative to marginal contributions, i.e., i+ 1 = argminj∈u

cj
mj(Si)

where

Si = {1, 2, . . . , i}, and selected as winners if ci
mi(Si−1)

≤ B/2
V(Si)

. In addition, user
i in the winner set is rewarded mi(Si−1) · B

V(uw) to guarantee the truthfulness.

Proportional share allocation rule: (1) Sort all the users according
to their non-decreasing costs relative to marginal contribution. (2) Allocate
user i to winner set uw if ci

mi(Si−1)
≤ B/2

V(Si)
.
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Fig. 1. Example of the sybil-attack.

Next, we illustrate an example to show Sybil attack in Fig. 1. In this example,
we set the budget of the requester (buyer) at B = 50. We use squares to denote
users (sellers) while circles represent tasks. The edge between a user and a task
means that this task is in this user’s task set. Each user owns a task set Ti and the
number above user i is her cost for task set Ti. The number below task tj is her
value vj to the buyer. There are four users u = {1, 2, 3, 4}, and corresponding
task sets: T1 = {t3, t4}, T2 = {t2, t4, t5}, T3 = {t1, t2, t3}, T4 = {t1, t5, t6}. In
addition, their costs are c1 = 6, c2 = 10, c3 = 5, c4 = 10, and the value of
these tasks are v1 = 4, v2 = 9, v3 = 6, v4 = 8, v5 = 6, v6 = 2, respectively. Let
V(S) =

∑
tj∈∪i∈STi

vj denote the value function given the user subset S.
According to proportional share allocation rule, user 3 with the mini-

mum cost per marginal value c3
V (T3)

= c3
v1+v2+v3

= 5
19 ≤ B/2

V({3}) = 25
19 is

first selected as a winner. Then, user 2 with the minimum cost per marginal
value among remaining users {1, 2, 4} is selected as the second winner, i.e.,

c2
V (T2\T3)

= c2
v4+v5

= 10
14 ≤ B/2

V({3,2}) = 25
33 . Last, user 4 has the minimum

cost per marginal value c4
V (T4\(T2∪T3))

= c4
v6

= 10
2 , but exceeds the threshold

B/2
V({3,2,4}) = 25

35 . Thus, we have the winner set {3, 2}. According to the payment
scheme, we have the payment p1 = 0, p2 = (v4 + v5) · B

V({3,2}) ≈ 21.21, p3 =
(v1 + v2 + v3) · B

V({3,2}) ≈ 28.79, p4 = 0. The utilities of these four users are
u1 = 0, u2 = 11.21, u3 = 23.79, u4 = 0, respectively.

Now, we assume that user 1 generates two identities: user 1′ with task set
T1′ = {t3} and cost c1′ = 1, and user 1′′ with task set T1′′ = {t4} and cost
c1′′ = 5, as shown in Fig. 1(b).

In such a scenario, user 1′ is selected as the first winner with the minimum
cost per marginal value c1′

v3
= 1

6 ≤ B/2
V({1′}) = 25

6 . Then, user 3 is selected as

the second winner since c3
v1+v2

= 5
13 ≤ B/2

V({1′,3}) = 25
19 . After that, user 1′′ is

selected as the third winner by c1′
v4

= 5
8 ≤ B/2

V({1′,3,1′′}) = 25
27 . Last, user 4 has

the minimum cost per marginal value c4
v6

= 10
8 which exceeds B/2

V({1′,3,1′′,4}) =
25
35 .

Thus, we have the winner set {1′, 3, 1′′}. According to the payment scheme,
we have the payment p1′ = 11.11, p1′′ = 14.81, p2 = 0, p3 = 24.07, p4 = 0. The
utilities of these four users in this case are u1 = 19.92, u2 = 0, u3 = 19.07, u4 = 0,
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respectively. Therefore, we can find that user 1 gains higher utility of 19.92 by
launching Sybil attack.

This demonstrates that the traditional budget-feasible mechanisms are vul-
nerable to Sybil attack. We can also find that Sybil attack may impact the
auctions from two aspects: First, a user launching Sybil attack may increase
her utility, at the cost of effecting the profits of other users, e.g., user 1’ utility
increases while the utilities of user 2 and 3 decrease when user 1 generates fake
identities. This behaviour may hinder the willingness of other users to partici-
pate in the system. Second, Sybil attack can also hurt the platform’s utility, e.g.,
the platform can only achieve utility 27 in Fig. 1(b) rather than 33 in Fig. 1(a).
Therefore, this motivates us to design an incentive budget-feasible mechanism
that is robust against Sybil attack.

5 Mechanism TBS

In this section, we propose a budget-feasible Sybil-proof mechanism TBS
(Truthful Budget-feasible and Sybil-proof mechanism).

The main idea of Mechanism TBS is as follows. In order to detect Sybil
attack, we first group all the users by the task size and sort all the groups
in the decreasing order of their users’ task size. Mechanism TBS consists of
two phases: winner selection and payment determination. In winner selection
scheme, we scan these groups to select winners starting from the group with
largest task size. Within each group, we iteratively select the user with the lowest
bid per marginal value until the specified threshold set to guarantee budget
feasibility and truthfulness is violated. In payment determination scheme, we
find a threshold payment, above which bids cannot be selected as winners.

Next, we introduce more details of Mechanism TBS as shown in Algorithm1.
Considering the budget constraint, we use B = B

2 as virtual budget to select
winners. We first group all the users by the task size |Ti|, i.e., users in the same
group have the same task size, and sort these groups in the decreasing order of
task size, i.e., G1,G2, . . . ,Gl, and start from the largest task size group. Assume
that we are now considering group Gh. We find the user with the lowest bid
per marginal value i = argminj∈Gh

bj
vj(Rj)

where set Rj denotes the union set of
all assigned task sets before j and vj(Rj) denotes the marginal value of user j
given the task set Rj , i.e., vj(Rj) = V (Rj ∪ Tj) − V (Rj). Suppose that i is the
i-th lowest user in this group. Let q denote the maximum bid per marginal value
among winners in the previous groups, i.e., q = maxj∈Gl∩uw,∀l<h

bj
vj(Rj)

. User i

will be selected as a winner if it satisfies
bi

vi(Ri)
≤ B

V (Ri ∪ Ti)
, q ≤ B

V (Ri ∪ Ti)
(2)

and
bi ≤ vi(Ri), V (Ri) + vi(Ri) ≤ B. (3)

Based on the strategies above, the mechanism can control winners’ cost per
marginal value and elicit the budget-feasibility as well as the Sybil-proofness.
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Algorithm 1: Mechanism TBS
Input: Sensing task set T , budget B, user set u, bidding profile !β.
Output: Assignment profile !A, payment profile !p.

1 R ← ∅, q ← 0, pi ← 0, Ai ← ∅, uw ← ∅;
2 Group users by the task set size, and sort these groups according to the

decreasing order of task size, i.e., G1,G2, ...,Gl;
3 k ← 1, q ← 0, B ← B/2, q0 ← 0, R0 ← ∅;
4 while k ≤ l do
5 // Winner Selection;

6 G′ ← Gk, i ← argmaxj∈G′
bj

vj(R) ;

7 while bi
vi(R) ≤ B

V (R∪Ti)
and q ≤ B

V (R∪Ti)
and bi ≤ vi(R) and V(R) ≤ B

and G′ %= ∅ do
8 G′ ← G′ \ {i}, q ← max{q, bi

vi(R)}, Ai ← Ti, R ← R ∪ Ti, uw ← uw ∪ {i};
9 i ← argmaxj∈G′

bj
vj(R) ;

10 end
11 qk ← q,Rk ← R
12 // Payment Determination;
13 for i ∈ Gk, Ai %= ∅ do
14 G′ ← G′ \ {i}, R′ ← Rk−1, q

′ ← qk−1;

15 ij ← argmaxj∈G′
bj

vj(R) ;

16 while
bij

vij (R
′) ≤ B

V (R′∪Tij
) and q′ ≤ B

V (R′∪Tij
) and bij ≤ vij (R

′) and

V (R′) ≤ B and G′ %= ∅ do

17 pi ← max{pi,min{vi(R′) ·min{
bij

vij (R
′) ,

B
V (R′∪Ti)

}, vi(R′)}};

18 G′ ← G′ \ {i}, q′ ← max{q′, bi
vi(R′)}, R

′ ← R′ ∪ Tij ;

19 ij ← argmaxj∈G′
bj

vj(R′) ;

20 end

21 end
22 k ← k + 1;

23 end

24 return uw, !A, !p

The process repeats until the bid per marginal value of user bi
vi(Ri)

or the value
of q exceeds the threshold B

V (Ri∪Ti)
, or the total value is higher than the budget

in this group V (Ri) + vi(Ri) > B, or user’s submitted cost is higher than the
marginal value bi > vi(Ri).

Then we calculate the payment pi for each winner i in this group Gh. Follow-
ing the general rule in [11,13], to elicit the truthfulness, the payment should be
set as the threshold payment by bidding which the winner can replace one of the
virtual winners as the winner. Thus, to find the threshold payment, we select
virtual winners from the same group without the winner herself using the same
winner selection scheme as follow. Given users Gh \ {i}, we similarly execute the
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winner selection scheme to select new virtual winning users denoted by uh
w,−i

and we assume that |uh
w,−i| = Ki. Let ij denote the selected user in the j-th

iteration. User i can be selected as a winner instead of user ij when her reported
cost c̃i(Ti) satisfies:

c̃i(Ti)
vi(Rij )

≤
bij

vij (Rij )
,
c̃i(Ti)
vi(Rij )

≤ B
V (Rij ∪ Ti)

, c̃i(Ti) ≤ vi(Rij ), (4)

simultaneously. Thus, to replace the virtual winner ij ∈ uh
w,−i, the bid of user i

is at most the minimum of three values: θi(j) = min{δi(j), ρi(j), vi(Rij )} where

δi(j) = vi(Rij ) ·
bij

vij (Rij )
and ρi(j) = vi(Rij ) · B

V (Rij ∪Ti)
. Moreover, we have Ki

bids since the size of set uh
w,−i is Ki and the last virtual winner is iKi . To replace

one of these virtual winners, user i should report at most the maximum among
these values and the marginal value of user i after Ki iteration:

pi = max

{
max

ij∈uh
w,−i

θi(j), vi(RiKi
∪ TiKi

)

}
(5)

which will be set as the final payment for winner i in this group.
After considering the current group, we process the next group Gh+1. This

will repeat until no users can be selected as winners.

5.1 Theoretical Analysis on Desired Properties

Next, we analyze the properties of mechanism TBS.

Lemma 1. Mechanism TBS is computationally efficient.

Proof. The running time of Mechanism TBS is dominated by the loop in the
winner selection phase (lines 8–12) and payment determination phase (lines 18–
31). In the winner selection process, the running time is at most O(n2) because
finding the minimum price-per-value user will take O(n) time and the number
of winners is at most n. In the payment scheme phase, the running time is
O(n3) since the select scheme will be executed n times. Therefore, the total
computational complexity of Mechanism TBS is O(n4) since at most n groups
need to be processed.

Lemma 2. Mechanism TBS is individually rational.

Proof. To simplify the notation, we neglect the label of group and let user i
denote the i-th winner in group Gh. Recall that user ij is the j-th virtual winner
in payment determination phase which selects virtual winners by excluding user
i herself. We assume that the order of virtual winners in the payment determi-
nation phase is i1, i2, . . . , i[i], . . . , iKi where [i] denotes the place where user i
should be selected in the winner selection phase if it was involved. It is obvious
that previous i − 1 sellers, i.e., from i1 to i[i]−1, are still selected as winners in
the winner selection phase. According to (2), we have

{ ci
vi(Ri)

≤ B
V (Ri∪{Ti})

ci ≤ vi(Ri)
(6)
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since user i is the winner in the truthful case. For the virtual winner i[i], we have

ci
vi(Ri)

≤
ci[i]

vi[i](Ri[i])
(7)

since user i is selected as winner rather than user i[i] in the winner selection
phase. Recall that δi[i] = vi(Ri[i]) ·

ci[i]
vi[i] (Ri[i] )

and ρi[i] = vi(Ri[i]) · B
V (Ri[i]∪{Ti}) .

By combining (6) and (7), we have





ci ≤
vi(Ri)·ci[i]
vi[i] (Ri)

=
vi(Ri[i] )·ci[i]
vi[i] (Ri[i] )

= δi[i]

ci ≤ vi(Ri)·B
V (Ri∪Ti)

=
vi(Ri[i] )·B
V (Ri[i]∪Ti)

= ρi[i]

ci ≤ vi(Ri) = vi(Ri[i]).

Thus, it is obvious that ci ≤ θi([i]). According to Eq. (5), we have pi ≥ max θi(j) ≥
θi([i]) ≥ ci. Therefore, TBS guarantees the individual rationality.

Before analyzing Mechanism TBS’s truthfulness, we first introduce a general
rule for verifying truthfulness:

Theorem 1 (Monotone theorem, [11,13]). In single parameter domains, an
auction mechanism is truthful iff:

– The selection rule is monotone: If user i wins the auction by bidding bi, it
also wins by bidding b′

i ≤ bi;
– Each winner is paid the critical value, which is the smallest value such that

user i would lose the auction if it bids higher than this value.

Lemma 3. Mechanism TBS is truthful.

Proof. We first prove that user i cannot improve her utility by submitting a false
task set. We assume that user i submits a false task set T̃i (= Ti. If T̃i ⊂ Ti, the
utility of i is zero according to Eq. (1). If Ti ⊂ T̃i, user i can not finish all the
tasks as a winner, thus fails to get payment. Therefore, users have to submit her
true task set for utility maximization.

Next, we prove that user i cannot improve her utility by bidding a false cost.
Following the general rule in Theorem1, we show that the designed mechanism
is monotone and the payment to each winning seller is the critical value.

Monotonicity: Assume that a winner user i in group Gh bids a lower cost
b′
i < ci. Since user i is a winner, we have






ci
vi(Ri)

≤ B
V (Ri∪Ti)

q ≤ B
V (Ri∪Ti)

ci ≤ vi(Ri)
(8)

Suppose that user i converts to the j-th (j < i) lowest price per marginal value
after bidding the lower bid. Recall that Ri denotes the total value of winners
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before user i. It is obvious that the total value of winners before i and j satisfies
Rj ≤ Ri. Thus, we have b′

i
vi(Rj)

≤ ci
vi(Ri)

due to b′
i ≤ ci ≤ vi(Ri) ≤ vi(Rj).

In addition, we have b′
i

vi(Rj)
≤ B

V (Rj∪Ti)
since ci

vi(Ri)
≤ B

V (Ri∪Ti)
≤ B

V (Rj∪Ti)
.

Additionally, note that q ≤ B
V (Ri∪Ti)

≤ B
V (Rj∪Ti)

. According to (2) and (3), user
i is still selected as a winner. Thus, mechanism guarantees monotonicity.

Threshold Payments: Now we consider each winner’s payment. Assume that
user iKi is the last winner in the payment determination scheme which processes
the users without i herself. Recall that

pi = max
{

max
1≤j≤Ki

{θi(j)}, vi(RiKi
∪ TiKi

)
}

(9)

If user i bids a higher cost bi > pi, we have bi > max1≤j≤Ki{θi(j)} which means
that user i will not be selected as a winner before Ki iterations in this group.
We also have pi > vi(RiK ∪ TiKi

), thus i will not be selected after Ki iterations
since any user will not be selected as winners if her bid is higher than it marginal
value due to (3). Thus, pi is the threshold payment and any winner will not be
selected as winner if her bid is higher than the payment pi. Therefore, users have
no incentive to submit false bid.

In summary, no sellers can increase her utility by submitting a false task-cost
pair. Therefore, Mechanism TBS guarantees truthfulness.

Before starting to consider budget feasibility, we first introduce a useful
lemma inspired by [3].

Lemma 4. Consider any set S ⊂ T ⊆ Gh in one group and i =
argminj∈T\S

cj
vj(S) . Then

c(T ) − c(S)
V (T ) − V (S)

≥ ci
vi(S)

. (10)

Proof. Assume that c(T )−c(S)
V (T )−V (S) <

ci
vi(S) which implies c(T )−c(S)

V (T )−V (S) <
ct

vt(S) for any
t ∈ T \ S. After adding all inequalities, we have

c(T ) − c(S)
V (T ) − V (S)

<

∑
t∈T\S ct∑

t∈T\S vt(S)

=
c(T ) − c(S)∑
t∈T\S vt(S)

which means V (T )− V (S) >
∑

t∈T\S vt(S) contradicting to the submodularity.

Lemma 5. Mechanism TBS is budget-feasible.

Proof. We prove the budget feasibility by showing that Mechanism TBS satis-
fies two properties:

∑
i∈uw

max1≤j≤K θi(j) ≤ B and
∑

i∈uw
vi(RiKi

∪ TiKi
) ≤ B.

Assume that user K in group k is the last winner in mechanism TBS. We focus
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on payment determination phase and let ij denote j-th user in the group e(e ≤ k)
without user i. We consider two cases:

(1) Consider θi(j): Recall that θi(j) = min{δi(j), ρi(j), vi(Rij )} and δi(j) =
vi(Rij ) ·

cij
vij (Rij )

. For each user ij < i[i], we have
cij

vij (Rij )
≤ ci

vi(Rij )
since user ij

is selected as winner instead of user i. Thus δi(j) ≤ ci which means θi(j) ≤ ci.
In group Gh, for each user ij ≥ i[i], we assume that the set of winners we

have chosen before ij is S. Suppose user i replaces ij as a winner by bidding
θi(j). Thus we have S ∪ {i} ⊂ uw ∪ S. In addition, we have

θij
vi(S)

≤ c(uw ∪ S) − c(S ∪ {i})
V (uw ∪ S) − V (S ∪ {i}) (11)

Recall that ci
vi(Ri)

≤ B
V (uw) which means that

∑
i∈uw

ci ≤ B. Thus, we have

V (uw) − V (S ∪ {i})
B

≤ V (uw) − V (S ∪ {i})∑
i∈uw

ci

≤ V (uw ∪ S) − V (S ∪ {i})
c (uw ∪ S) − c(S ∪ {i})

(12)

Assume that θi(j) > vi(Ri) · B
V (uw) , we have

vi(S)
θi(j)

<
vi(S)
vi(Ri)

· V (uw)
B ≤ V (uw)

B (13)

where the second inequality is due to Ri ⊆ S. By combining (11) and (13), we
have

B
V (uw)

<
c(uw ∪ S) − c(S ∪ {j})
V (uw ∪ S) − V (S ∪ {j}) (14)

According to (12) and (14), we have V (uw) < 2V (S ∪ {i}) due to B = 2B.
However, since

bij
vij (Rij )

≤ B
V (S∪{ij}) , we have

θi(j) ≤ δi(j) =
vi(Rij ) · bij
vij (Rij )

≤
vi(Rij ) ·B
V (S ∪ {ij})

≤ vi(Ri) ·
B

V (uw)

(15)

which contradicts to the assumption θi(j) > vi(Ri) · B
V (uw) . Thus, we have θi(j) ≤

vi(Ri) · B
V (uw) .

(2) Consider vi(RiK ): It is obvious that vi(RiK ) ≤ vi(Ri). Thus, we have
vi(RiK ) ≤ vi(Ri) ≤ vi(Ri) · B

V (uw) since V (uw) ≤ B due to (3).
Therefore, Mechanism TBS guarantees budget feasibility.

Before proving Sybil-proofness of Mechanism TBS, we introduce the following
general rules introduced by [10]:
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Theorem 2. A mechanism is Sybil-proof if it satisfies the following two condi-
tions:

– If any user i pretends two identities i′ and i′′, and both i′ and i′′ are selected
as winners, then i should be selected as a winner while using only one identity;

– If any user i pretends two identities i′ and i′′, the payment to i should not be
less than the summation of the payments to i′ and i′′.

Lemma 6. Mechanism TBS is Sybil-proof.

Proof. We first prove TBS satisfies the first condition. Assume that user i gen-
erate two identities i′ and i′′ which implies that Ti′ ⊂ Ti and Ti′′ ⊂ Ti, and
both of them are selected as winners. Let R′,R′′ denote the union assigned task
set before i′, i′′ are selected as winners respectively. Similarly, denote by R the
union assigned task set before user i is selected as the winner. W.l.o.g, suppose
the group of i′ is ahead of the group of i′′. Since user i′ and i′′ are all winners,
according to conditions of being winners in (2) and (3), we have

bi′ ≤ vi′(R′), bi′′ ≤ vi′′(R′′) (16)

and
bi′

vi′(R′)
≤ B

V (R′ ∪ Ti′)
bi′′

vi′′(R′′)
≤ B

V (R′′ ∪ Ti′′)
bi′

vi′(R′)
≤ B

V (R′′ ∪ Ti′′)

(17)

where the reason for the third inequality is that the maximum bid per marginal
value q among winners before i′′ is higher than bi′

vi′ (R′) and it must be not higher
than the current average price-per-value B

V (R′′∪Ti′′ )
according to the selection

rule (2). Also note that

vi′(R′) ≤ vi′(R), vi′′(R′′) ≤ vi′′(R) (18)

since the groups of user i′, i′′ will follow the groups of user i. Combining (16)
and (18), we have

bi = ci ≤ ci′ + ci′′ = bi′ + bi′′

≤ vi′(R′) + vi′′(R′′)
≤ vi′(R) + vi′′(R)
≤ vi(R)

(19)

where the reason for the first and last inequality is because Ti = Ti′ ∪ Ti′′ . By
combining (17) and (19), it holds that

ci
vi(R)

≤ bi′ + bi′′

vi′(R′) + vi′′(R′′)
≤ B

V (R′′ ∪ Ti′′)

≤ B

V (R ∪ Ti)
.

(20)
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Thus user i will still be selected as a winner without generating multiple identi-
ties.

Next, we consider the second condition. It is obvious that the payment of user
i is at least vi(RiKi

) according to (5). Recall that the order of winning seller in
the payment determination phase is i1, i2, . . . , i[i], . . . , iKi and [i] denotes the
place where user i should be selected in the winner selection phase if it was
involved. Thus, we have bij ≤ vij (Rij ) where ij is selected in Ki iterations. For
the user after i[i], we have min{δi(r), ρi(r), vi(Rir )} ≤ vi(Rir ) ≤ vi(Ri) where
ir ≥ i[i]. For the user ij before i[i], we have

min{δi(j), ρi(j), vi(Rir )} ≤ δi(j) = vi(Rij ) ·
bij

vij (Rij )

≤ vi(Rij ) ·
bi

vi(Rij )
= bi

≤ vi(Ri)

(21)

where the reason for the second inequality is that user ij is selected as winner
instead of user i. Furthermore, after Ki iterations, we have vi(RKi) ≤ vi(Ri).
Hence, we have pi ≤ vi(Ri). Similarly, we have pi′ ≤ vi′(Ri′) and pi′′ ≤ vi′′(Ri′′).
Thus we have

pi′ + pi′′ ≤ vi′(Ri′) + vi′′(Ri′′)
≤ vi′(Rik′ ) + vi′(Rik′ )
≤ vi(RiK′ ) ≤ pi

(22)

Hence, the second condition is satisfied.
Therefore, Mechanism TBS guarantees Sybil-proofness.

6 Performance Evaluation

In this section, we conduct extensive simulations to validate the performance of
Mechanism TBS. We first verify the desired properties (truthfulness and robust-
ness against Sybil attack) of Mechanism TBS. Then, we validate the performance
of Mechanism TBS in terms of various optimization metrics, e.g., payment (the
payment for target value), platform utility (the total value procured from users),
and average user utility (the sum of users’ utilities over the number of sellers).
Under these metrics, we take the Sybil-proof Mechanism SPIM-S proposed in
[10] as the benchmark algorithm. Although Mechanism SPIM-S cannot work in
the procurement scenario with budget constraint, we can achieve the comparison
by enumerating the inputs of Mechanism SPIM-S.

Simulation Setup. In our evaluation, we assume that the task size of each
user is uniformly distributed over [1, 5], and value of each task is uniformly
distributed over [1, 20]. The users’ costs for each task is uniformly distributed
over [1,10]. In default, we set the number of users, the number of tasks and
budget at 150, 200 and 200, respectively. To evaluate the impact of number of
total users on the performance of platform utility and average user utility, we
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Fig. 2. The impact of
untruthful bids on TBS.

Fig. 3. The impact of
Sybil attack on TBS.

Fig. 4. The impact of
Sybil attack on TBS.

vary the number of users from 40 to 140 with the increment of 20. Similarly,
to evaluate the impact of number of total tasks on the performance of platform
utility and average user utility, we let the number of tasks vary from 80 to 200
in increment of 20. Furthermore, to evaluate the impact of total budget on the
performance of platform utility and average user utility, we change the budget
from 120 to 400 with the increment of 40. All the results are averaged over 100
instances.

6.1 Evaluation of Desired Properties

The properties like individual rationality and budget feasibility of Mechanism
TBS can be easily verified. In this part, we mainly validate the truthfulness
and Sybil-proofness of Mechanism TBS by letting users submit false bids or
launch Sybil attack unilaterally, and monitoring the corresponding utilities. In
the simulation, we fix the number of tasks at 150 and the number of users at
200, respectively.

Figure 2 shows the impact of (untruthful) bids on user utilities for Mechanism
TBS. To validate truthfulness, we let each of these users unilaterally change her
bid in [1, 10]. We randomly select three users: 139, 140, and 106 of TBS. User
106 is a loser with real cost 7.56 while users 139 and 140 are winners with real
costs 3.27 and 1.31, respectively. Specifically, in Fig. 2, we use larger markers to
indicate the utilities for truthful bids and the smaller ones to indicate those of
untruthful bids. We observe that these users cannot achieve more utilities after
bidding false costs, e.g., user 139 obtains less utilities if her bid is not equal to
her real cost 3.27. Therefore, users obtain the maximum utility when bidding
real cost, which validates the truthfulness of Mechanism TBS.

Figure 3 shows the impact of Sybil attack on user utilities of Mechanism TBS.
To validate Sybil-proofness, we let each of these users create up to 5 false names.
For each false name, the submitted task set is a subset of the submitted tasks
of the user. We select three users: 80, 137, and 107 of TBS. User 80 and 137 are
winners while user 107 is a loser. Moreover, in Fig. 3, we also use larger markers
to indicate the utilities when users do not launch Sybil attack. We observe that
these users achieve the highest utilities without generating fake identities, e.g.,
user 137 obtains less utilities after creating more false names. Therefore, a user
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cannot increase her utility by unilaterally launching Sybil attack which validates
the Sybil-proofness of Mechanism TBS.

6.2 Evaluation of Optimization Metrics

Next, we compare Mechanism TBS with Mechanism SPIM-S using aforemen-
tioned metrics. Since Mechanism SPIM-S actually cannot be applied to pro-
curement scenarios with budget constraint, we use enumeration method when
conducting the comparison. Specifically, to evaluate the platform utility and
average user utility, we enumerate the possible outputs of SPIM-S by running
multiple rounds of auctions to find the one that uses up the given budget. To
evaluate the payment, we enumerate possible outputs until a target total value
is procured.

Fig. 5. (a)–(c) show the impact of users, tasks and budget on platform utility, while
(d)–(f) on average user utility.

Evaluation of Platform Utility. The top part of Fig. 5 shows the impact of
users, tasks and budget on platform utility for Mechanism TBS and Mechanism
SPIM-S. In Fig. 5(a), Fig. 5(b) and Fig. 5(c), we see that while preserving the
budget feasibility, Mechanism TBS can achieve similar platform utility to that of
the Mechanism SPIM-S. This demonstrates that a small loss of overall platform
utility might be needed to guarantee budget constraint in the procurement sce-
nario. Furthermore, in both Fig. 5(a) and Fig. 5(b), the platform utility increases
in all these two mechanisms. The respective reasons are that competition among
users has become more fierce which leads to more users with lower costs being
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winners, and more users can be selected as winners with increments of tasks.
However, as a constant budget is set in the experiment, the platform utility is
growing slowly in both figures. In addition, the platform utility grows steadily
with the increments of budget as shown in Fig. 5(c).

Evaluation of Average User Utility. The bottom part of Fig. 5 shows the
performance of user average utility, defined as the total utilities of all uses over
the number of users, for Mechanism TBS, and Mechanism SPIM-S. In Fig. 5(d),
Fig. 5(e) and Fig. 5(f), we can see that the average user utility of Mechanism
TBS is higher than Mechanism SPIM-S. This is because TBS can select the user
with smaller cost which improves winner’s utility. As shown in Fig. 5(d) and
Fig. 5(f), average user utility decreases as the number of users increases, while it
rises as budgets increase. This is because 1) as the number of users increases the
competition among users become more fierce resulting in lower payments, 2) as
budget increases more users can participate in the system.

Evaluation of Payment. Figure 4 compares payments at various target values.
We fix the number of tasks and the number of users at 150 and 200, respectively,
and set budget at 600 for Mechanism TBS. We vary the target value from 50
to 700 with increment of 50. We can see that Mechanism SPIM-S spends higher
payments when procuring the same value from users than Mechanism TBS.
The reason is Mechanism TBS considers each user’s cost per marginal value
below the defined threshold in the selection phase, while Mechanism SPIM-S
only considers the costs which may lead to a user with higher cost per marginal
value also being selected as a winner, and further result in a increment of total
payment. Therefore, our proposed mechanism will spend less for unit value while
guaranteeing budget-feasibility.

In summary, our proposed Mechanism TBS can guarantee budget feasibility,
truthfulness and Sybil-proofness. More importantly, it spends less on procuring
a target value than previous Sybil-proof mechanisms.

7 Conclusion

In this paper, we study Sybil-proof and budget-feasible incentive mechanisms
for crowdsensing systems. We design an incentive mechanism TBS and prove
that the designed mechanism guarantees the individual rationality, truthfulness,
budget-feasibility and Sybil-proofness. We validate the desired properties of the
designed mechanism through extensive simulations.
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