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Abstract
In this paper, we consider the problem of designing
budget-feasible mechanisms for selecting agents
with private costs from various groups to ensure
proportional representation, where the minimum
proportion of the selected agents from each group
is maximized. Depending on agents’ membership
in the groups, we consider two main models: single
group setting where each agent belongs to only one
group, and multiple group setting where each agent
may belong to multiple groups. We propose novel
budget-feasible proportion-representative mecha-
nisms for these models, which can select repre-
sentative agents from different groups. The pro-
posed mechanisms guarantee theoretical properties
of individual rationality, budget-feasibility, truth-
fulness, and approximation performance on propor-
tional representation.

1 Introduction
Selecting a proper number of agents from each group to
fairly represent the population of each group has received
increased attention in recent years. For instance, selecting
a committee consisting of members from different groups
or hiring a set of workers of diverse attributes require mak-
ing selection decisions on a given set of population (e.g.,
see [Bredereck et al., 2018; Cahuc and Postel-Vinay, 2002;
Lang and Manove, 2011]). Fair representations also can be
applied to the context of political poll or survey sampling
in which the organizer wishes to obtain a diverse set of re-
sponses from various groups of populations [Bradburn et al.,
2004; Jackson et al., 2020]. In fact, the consequences of
inadequate group representation can result in inaccurate ac-
counts/analysis (e.g., inaccurate poll predictions due to lacks
of representative samples [Jackson et al., 2020]) and discrim-
ination (e.g., group discrimination when hiring workers [Lang
and Manove, 2011] ) in various domains.

In addition to the challenge of achieving fair representa-
tion, in many settings, there is an inherited private agent cost
associated with selecting each agent (e.g., salary in job hir-
ing or cost for conducting the survey) and the cost is internal
∗Corresponding author

or not visible to the social planner. Ideally, the planner elicits
cost information from the agents, determines the agents to se-
lect, and derives appropriate compensation or payment to the
selected agents. However, the agents can be strategic and do
not necessarily report their true cost. As a result, the social
planner must take into account whom to select to represent
groups when taking costs into consideration to ensure that
the total payment to all agents does not exceed the available
budget (e.g., the budget for hiring or conducting studies).

The problem in hand can be cast naturally into a budget-
feasible mechanism design setting [Singer, 2010] where the
social planner seeks to design a computationally efficient
mechanism that elicits truthful cost information from the
agents, selects representative agents to represent each group
fairly, and ensures the total payment to the agents is no more
than the budget. More specifically, can we design a budget-
feasible mechanism which fairly selects agents from different
groups and guarantees desirable economic properties, while
guaranteeing a bounded total payment from the planner?
Our Contribution. We consider the problem of design-
ing budget-feasible mechanisms for representing groups of
agents proportionally satisfying standard properties (i.e., in-
dividual rationality, budget feasibility, and truthfulness). We
first adopt and formulate our objective to select agents that
maximizes the minimum proportion ratio of the selected
agents from each group, based on a well-studied notion of
proportional representation (e.g., in electoral systems).

We consider two general models depending on whether
each agent belongs to (1) one group or (2) multiple groups
(in which the agents can be (2a) counted exactly once or
(2b) multi-counted) and design proportional representation
budget-feasible mechanisms for the models under our objec-
tive. The proposed mechanisms guarantee desirable theoret-
ical properties including budget feasibility, individual ratio-
nality, truthfulness, and approximation guarantee.

In particular, for (1), we construct a novel greedy mecha-
nism that considers all possible proportion ratios and appro-
priate payment schemes that select agents from each group
satisfying the ratios and ensuring budget feasibility. The pro-
posed mechanism achieves approximation performance that
depends on the size of the largest and smallest groups. More-
over, we show the asymptotic matching lower bound that
no budget-feasible proportion-representative mechanisms can
achieve better performance asymptotically.
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For the multiple group setting (2a) or (2b), we construct
a novel mechanism that leverages the Max-Flow algorithm to
test the proportional representation in the maximum matching
under a given agent set, in which we can find the candidate
agent set with the greatest proportional representation within
the budget constraint. We then apply the minimum weight
matching to identify the final selected agents from candidate
agents, whereby the tested maximum proportional represen-
tation can be obtained and the corresponding payment de-
termined. The designed mechanisms in this setting can also
achieve approximation performance that depends on the size
of groups.
Related Work. Since the seminal work of [Singer, 2010],
many research efforts have been invested to design budget-
feasible mechanisms for various planner’s valuation func-
tions. [Chen et al., 2011] further develop improved mech-
anisms with better approximation ratio for the submodu-
lar value function, while [Amanatidis et al., 2017] consider
symmetric submodular valuations, a prominent class of non-
monotone submodular functions. [Anari et al., 2014] design a
constant-approximation budget-feasible mechanism for large
markets where sellers’ costs are far less than the buyer’s bud-
get and show that it is impossible to achieve bounded ap-
proximation ratio without large market assumption when sell-
ers’ items are divisible. [Singer and Mittal, 2013] focus on
designing pricing mechanisms with the objective to maxi-
mize the number of tasks while guaranteeing budget feasibil-
ity. These mechanisms in existing literature do not perform
well for our settings directly as they do not consider groups
and ensure proportional representation. Several works take
the group attributes into account and consider the diversity
fairness when designing auction mechanisms [Ilvento et al.,
2020; Kuo et al., 2020; Chawla and Jagadeesan, 2020]. How-
ever, they all ignore the planner’s budget constraint and can-
not guarantee the budget-feasibility. In this work, we want to
design proportion-representative mechanisms while ensuring
the budget constraint.

Rather than the incentive mechanism design setting ad-
dressed in this paper, we note that proportional representation
has been studied from the optimization or algorithmic per-
spective in various areas such as voting and electoral systems.
For example, [Procaccia et al., 2008] focus on analyzing the
complexity of achieving proportional representation. [Buis-
seret and Prato, 2020] consider the voter preferences in pro-
portional representation systems to understand the candidate
selection and behavior. In addition, there are works consider-
ing diversity fairness in matching/allocation problems [Ben-
abbou et al., 2020; Ahmadi et al., 2019].

2 Preliminaries
In this section, we define the proportion-representative selec-
tion settings and the desirable properties of the mechanisms.

2.1 The Model
We consider a scenario with a planner a and a set of n agents
S = {s1, s2, ..., sn}. The agents have group attributes, speci-
fying one or more groups the agent belongs to based on, e.g.,
genders, ages, ethnicities, regions and educational levels. The

agents are divided into m groups G = {G1, G2, ..., Gm}.
Each group Gj is a subset of S, i.e., ∅ 6= Gj ⊆ S, and
G1 ∪G2 ∪ · · · ∪Gm = S. Let G(si) denote the set of groups
that agent si belongs to. The agents are to be selected by the
planner for proportional representation.

The planner has a budget B ∈ R+ and each agent si has
a private cost ci ∈ R+ (e.g., her required cost for time, pri-
vacy or fees) when selected to represent her group. We use
C = {c1, c2, ..., cn} to denote agents’ costs. Let C−i de-
note all costs except si’s cost ci. Let nj be the total num-
ber of agents in group Gj , i.e., |Gj | = nj . Denote by
nmin and nmax the minimum and maximum total number
of agents among all the groups respectively, i.e., nmin =
min1≤j≤m nj , nmax = max1≤j≤m nj . The agents may act
strategically to maximize their own utilities by misreporting
their costs. Each agent bids a cost bi that may be different
from her real cost ci in order to maximize her utility (defined
below). Let b = {b1, b2, ..., bn} denote agents’ bid profile
and b−i denote all bids except si’s bid bi. We sometime use
(bi, b−i) to represent b as to highlight si’s bid.

2.2 The Mechanism
A mechanism M = (X ,P) consists of an allocation rule X
deciding the selected agents (who are chosen by the plan-
ner) and a payment scheme P deciding the payment to each
agent. Denote by Sw the selected agent set. The alloca-
tion function X maps a set of bids b to the selected agent
set Sw = X (b1, ..., bn) ⊆ S. We use xi ∈ {0, 1} to in-
dicate whether agent si is chosen by the planner and pi to
denote the payment to agent si. Let X = {x1, x2, ..., xn}
and P = {p1, p2, ..., pn} denote the allocation and payment
profile, respectively. Given a mechanism M , the utility of
agent si is defined as the difference between the payment she
receives and her true cost, i.e.,

ui(bi, b−i,M) = pi − xi · ci. (1)

We consider both the single group setting problem (SGP)
where each agent only belongs to one group, and the multiple
group setting problem (MGP) where agents may belong to
multiple groups. LetQj denote the number of selected agents
in group Gj . Next, we define two main group setting models.

Single Group Setting Problem (SGP): Since each agent
belongs to only one group, we have |G(si)| = 1. Then, the
number of selected agents in group Gj is Qj =

∑
si∈Gj

xi.
Multiple Group Setting Problem (MGP): In this setting,

an individual agent may belong to multiple groups, i.e., 1 ≤
|G(si)| ≤ m. Depending on whether each selected agent can
be counted into all groups, we further consider two cases:
Single Counting (MGP-SC) case where a selected agent is
counted just once in one of the groups she belongs to and
Multiple Counting (MGP-MC) case where a selected agent
is counted in all groups she belongs to. For example, when
forming a committee, the agent selected can only represent
one of groups to which she belongs, or when she is selected,
all the groups to which the agent belongs are happy.

(1) MGP-SC: Each selected agent is only included in the
selected agents of the group she is matched to. Let xij = 1
indicate that agent si is matched to group Gj ∈ G(si), oth-
erwise, xij = 0. We also have xi =

∑
j:Gj∈G(si) xij ≤
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1 where xij ∈ {0, 1}, ∀i ≤ n. Thus, we have Qj =∑
si∈Gj

xij . (2) MGP-MC: Each selected agent is counted
in all groups she belongs to. Thus, we haveQj =

∑
si∈Gj

xi.
To obtain a proportion-representative selection of agents,

we define the selection ratio of group Gj as Qj

nj
, representing

the ratio between the number of selected agents and the to-
tal number of agents in group Gj . As such, the mechanisms
we design aim to consider the objective of maximizing the
minimum selection ratio of groups, i.e., max min1≤j≤m

Qj

nj
.

We consider budget-feasible proportion-representative
mechanism M that has the following properties:
• Budget feasibility. The total payment of the planner

does not exceed her budget B, i.e.,
∑

1≤i≤n pi ≤ B.

• Individual rationality. The utility of each agent si is
non-negative, i.e., ui(ci, b−i,M) ≥ 0.
• Truthfulness. Each agent achieves the maximum util-

ity by bidding her real cost, i.e., ui(ci, b−i,M) ≥
ui(bi, b−i,M).
• Computational efficiency. The output of the mecha-

nism can be computed in polynomial time.
• Approximation. Let ALG(I) be the minimum selec-

tion ratio among groups of the proposed mechanism M
on input instance I . We compare the output of the mech-
anism with the optimal achievable selection ratio when
agents’ costs are known in advance. We say that a mech-
anism is α-approximate if ALG(I) ≥ 1

α
OPT (I) for any

instance I .

3 Mechanism for Single Group Settings
We introduce a Budget-feasible Proportion-representative
mechanism for the Single Group setting (BPSG) below.

The main idea of Mechanism BPSG is as follows. We first
generate a virtual ratio set which contains all possible selec-
tion ratios for each group when selecting different number of
agents from this group. In order to maximize the minimum
selection ratio among all groups within the budget constraint,
we find all feasible virtual ratios which ensure that the selec-
tion ratio for each group does not fall below that ratio and the
current total payment does not exceed the budget. Specif-
ically, the payments for the selected agents depend on the
the bids of agents after the last selected agent in each group.
Among all these feasible virtual ratios, we find the maximum
one as the final selection ratio for all groups.

The detail of Mechanism BPSG is shown in Algorithm
1. In order to distinguish the agents belonging to different
groups, we use bji to denote the i-th agent’s (agent sji ) bid in
group Gj (We sort all agents in the same group Gj:1≤j≤m in
the non-decreasing order of their bids, i.e., bj1 ≤ bj2 ≤ · · · ≤
bjnj

). Denote by pji the payment for agent sji . We then gener-
ate a virtual ratio set R which consists of possible selection
ratios among all groups, i.e.,

R = ∪0≤i≤nj ,1≤j≤m {i/nj} (2)

We remove duplicate elements from R and sort all ratios in
the non-decreasing order of their values where γl is the l-th

element in R, i.e., γ1 < γ2 < · · · < γl < · · · < γ|R|.
Denote by rf the final base selection ratio as the minimum
selection ratio among groups in the final solution.

To find the final base selection ratio, we iteratively con-
sider ratios in R starting with the first ratio γ1

1. Suppose
that we are now considering ratio γl. Let Ij(γl) denote
the minimum number of agents which ensures that the se-
lection ratio in group Gj is at least γl, and we thus have
Ij(γl) = dγl · nje. Specifically, Mechanism BPSG will
select up to nj − 1 agents from each group Gj (as to en-
sure truthfulness). Thus, when trying ratio γl, BPSG will
terminate and output γl−1 as the final base selection ratio if
there exists group Gj with Ij(γl) = nj (line 6). If we have
Ij(γl) < nj , ∀j ≤ m, we compute the current payment for
each of the first Ij(γl) agents in group Gj as the bid of agent
sjIj(γl)+1, i.e., pji = bjIj(γl)+1, ∀i ≤ Ij(γl). Thus, when all
groups have a selection ratio of at least γl, the total payment,
denoted by Pγl , is

Pγl =
∑

1≤j≤m

Ij(γl) · bjIj(γl)+1. (3)

It is easy to see that Pγl is increasing with γl. If Pγl ≤ B, we
continue to try the next ratio γl+1. Otherwise, the final base
selection ratio is rf = γl−1.

Once deciding the final base selection ratio, we determine
the final selected agents and corresponding payments. Let
kj denote the number of selected agents in group Gj , i.e.,
kj = Ij(rf ) = Qj . In each group Gj , the first kj agents are
selected, i.e., sji ∈ Sw, ∀i ≤ kj , and we have kj < nj . Then
we have

pji =

{
bjkj+1, if sji ∈ Sw
0, otherwise.

(4)

Running example: We now show a running example of
Mechanism BPSG. Suppose there are nine agents who can
be divided into two groups G1 and G2. Group G1 has
four agents G1 = {s11, s12, s13, s14} with costs {1, 1.5, 3, 4}
and group G2 has five agents G2 = {s21, s22, s23, s24, s25}
with costs {0.5, 1.5, 2, 3, 5}. Thus, we have n1 =
4 and n2 = 5. The virtual ratio set is R =
{0, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 1}. The planner has bud-
get B = 10. We now try virtual ratios by starting from the
first non-zero ratio 0.2:

(1) Try ratio 0.2: We have I1(0.2) = 1 and I2(0.2) = 1.
Thus, we will select s11 from G1 and pay her 1.5, and select
s21 from G2 and pay her 1.5. Then, the total payment is 3 <
B = 10 and we will try next ratio 0.25.

(2) Try ratio 0.25: We have I1(0.25) = 1 and I2(0.25) =
2. Thus, we will select s11 from G1 and pay her 1.5, and
select s21, s

2
2 from G2 and pay each of them 2. Then, the total

payment is 5.5 < 10 and we will try next ratio 0.4.
(3) Try ratio 0.4: We have I1(0.4) = 2 and I2(0.4) = 2.

Thus, we will select s11, s
1
2 from G1 and pay each of them 3,

and select s21, s
2
2 from G2 and pay each of them 2. Then, the

total payment is 10 = B and we will try next ratio 0.5.
(4) Try ratio 0.5: We have I1(0.5) = 2 and I2(0.5) = 3.

Thus, we will select s11, s
1
2 from G1 and pay each of them 3,

1Note that the first virtual ratio in R is 0. At such a ratio, we
select no agents and pay each agent zero.
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Algorithm 1: Mechanism BPSG(B, b, S, G)
Input: B, b, S, G.
Output: P, Sw

1 P ← 0, Sw ← ∅;
2 Sort agents in Gj(∀1 ≤ j ≤ m), in the non-decreasing

order of their bids bj1 ≤ b
j
2 ≤ · · · ≤ bjnj

and generate the
virtual ratio setR with value sorted and indexed by γl’s;

3 // Determine the final base selection ratio;
4 for 1 ≤ l ≤ |R| do
5 Compute Ij(γl) = dγl · nje for any 1 ≤ j ≤ m;
6 if Ij(γl) < nj , ∀j ≤ m then
7 Compute the payment Pγl according to (3);
8 if Pγl ≤ B then
9 l← l + 1;

10 else
11 break;
12 end
13 else
14 break;
15 end
16 end
17 rf ← γl−1;
18 // Agent selection and payment scheme;
19 Add agent sji (∀j ≤ m) with i ≤ kj = Ij(rf ) into the

selected agent set Sw;
20 Decide the payments to agents according to (4);
21 return P, Sw

and select s21, s
2
2, s

2
3 from G2 and pay each of them 3. Then,

the total payment is 15 > B = 10.
Then, Mechanism BPSG terminates with the final base

selection ratio 0.4. The selected agent set is Sw =
{s11, s12, s21, s22} with payments p11 = 3, p12 = 3, p21 = 2, p22 =
2, while the payments for unselected agents are zero.

Next, we analyze the performance of Mechanism BPSG.

Theorem 1. Mechanism BPSG guarantees individual ratio-
nality, budget feasibility, and computational efficiency.

Proof. 1) Individual rationality: Since Mechanism BPSG is
truthful (proved below), we have bji = cji where cji is the true
cost of agent sji . For each selected agent sji , we have bji ≤
bjkj+1 where i ≤ kj in group Gj , and her payment is bjkj+1

which implies that her utility is bjkj+1− c
j
i = bjkj+1− b

j
i ≥ 0

which is non-negative. 2) Budget feasibility: After deter-
mining the selection ratio, it is easy to see that the total pay-
ment is

∑
1≤j≤m kj · b

j
kj+1 ≤ B which is no greater than the

budgetB. 3) Computational efficiency: The running time of
Mechanism BPSG is dominated by the sorting (line 2) and the
loop in determining the final base selection ratio (line 4-15)
as shown in Algorithm 1. Therefore, the total computational
complexity is O(n2). This completes the proof.

We first provide a well-known Myerson’s characterization
for truthful mechanisms in the single parameter domain.

Theorem 2. (Monotone Theorem, [Myerson, 1981]) In the
single parameter domains, a mechanism M = (X ,P) guar-
antees sellers’ truthfulness if and only if:

(1) X is monotone: ∀si ∈ S, if bi ≤ ci, then si ∈
X (ci, C−i) implies si ∈ X (bi, C−i) for every C−i;

(2) winners are paid threshold payments: the payment
to each winning bidder is the critical value inf{ci : i /∈
X (ci, C−i)}.

We prove the truthfulness of Mechanism BPSG by leverag-
ing the theorem above. Suppose that the final base selection
ratio is the l-th element in virtual setR, i.e., rf = γl.
Theorem 3. Mechanism BPSG guarantees truthfulness.

Proof (Sketch). Depending on the final base selection ratio,
we consider the following two cases:

Case 1: There exists no group Gj in which when try-
ing the next virtual ratio γl+1, we select all its agents, i.e.,
Ij(γl+1) < nj , ∀1 ≤ j ≤ m. 1) We first show that if the
selected agent sji in group Gj , i.e., i ≤ kj , reports a lower
cost bji′ < bji ≤ b

j
kj+1, she will still be selected. Thus, BPSG

is monotone. 2) If agent sji with i ≤ kj reports a cost higher
than her payment bji′ > bjkj+1, we prove that sji will not be
selected with zero utility. Thus, the selected agents are paid
threshold payments.

Case 2: There exists a group Gj in which when try-
ing the next virtual ratio γl+1, we select all its agents, i.e.,
∃1 ≤ j ≤ m, Ij(γl+1) = nj . We similarly prove that Mech-
anism BPSG is monotonic and the selected agents are paid
threshold payments.

Therefore, Mechanism BPSG guarantees truthfulness.

Next, we introduce a useful property of Mechanism BPSG.
Let rj(γl) denote the selection ratio of group Gj after
selecting kj agents, i.e., rj(γl) =

kj
nj

. We use rmax
and rmin to denote the maximum and minimum selec-
tion ratios among groups when the final base selection ra-
tio is γl, i.e., rmax = max1≤j≤m{rj(γl)} and rmin =
min1≤j≤m{rj(γl)}. Specifically, we have rmin = γl = rf
since there must exist at least one group Gj whose selection
ratio is rj(γl) = γl due to the generation ofR in (2). Denote
by α the ratio between nmax and nmin, i.e., α = nmax

nmin
.

Lemma 1. Mechanism BPSG has the following two prop-
erties: (1) γh+1 − γh ≤ 1

nmax
, ∀1 ≤ h ≤ |R| − 1; (2)

rmax − rmin < 1
nmin

.

Given the above lemma, we consider the approximation
guarantee of BPSG. LetALG andOPT denote the minimum
selection ratio of Mechanism BPSG and the optimal solution,
respectively. Our analysis considers two separate cases. In
the first case when BPSG is able to select at least one agent
from each group, we show that BPSG obtains an approxima-
tion ratio that depends on the ratio between the maximum and
minimum number of agents among groups. In fact, the ratio
is asymptomatically tight as we showed later. If Mechanism
BPSG cannot select at least one agent from each group, we
show that no budget-feasible proportion-representative mech-
anisms can output a better solution than BPSG.
Theorem 4. (1) Mechanism BPSG achieves (3 + α)-
approximation ratio if BPSG selects at least one agent from
each group (i.e., ALG ≥ 1

nmax
) where α = nmax

nmin
.
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(2) No budget-feasible proportion-representative mecha-
nism M can achieve ALGM ≥ θ for any θ > 0 where
ALGM is the solution ofM if Mechanism BPSG cannot se-
lect at least one agent from each group, i.e., ALG = 0.

Proof (Sketch). Recall that the final base selection ratio is γl,
i.e., ALG = γl. We have nj ≥ 2, ∀j ≤ m since BFSG
can select at least one agent from each group. Depending
on the conditions at the termination of BPSG, we consider
two cases: i) There exists group Gj in which we select all
agents, i.e., ∃j ≤ m, Ij(γl+1) = nj , when trying the next
virtual ratio γl+1. We prove that γl · nj = nj − 1 and
OPT
ALG

≤ 1/(1− 1
nj

) ≤ 2. ii) Next, we focus on the case that
not all agents are selected from any group Gj when trying
γl+1, i.e., Ij(γl+1) < nj , ∀j ≤ m. Let G′ denote the set of
all groups that can choose exactly rf · nj = kj agents mak-
ing the selection ratio in group Gj equal to rf , ∀Gj ∈ G′.
Depending on whether the next ratio γl+1 is generated from a
group in G′ or not, we consider the following two sub-cases:

Sub-case 1: The virtual ratio γl+1 is generated from
the group Gj /∈ G′. We divide agents into two parts: S̃ =

{sji |i ≤ kj , ∀Gj /∈ G′} ∪ {sji |i ≤ kj + 1, ∀Gj ∈ G′} and
S \ S̃ for further analysis.

For set S̃: The optimal solution can select all agents in S̃
with cost zero in the best case and spend the budget on the
remaining agents in S \ S̃. We show that after OPT chooses
all agents in S̃, the maximum selection ratio among all groups
is rmin + 1

nmin
, and the minimum selection ratio is γl+1.

For set S \ S̃: We show that the optimal solution can select
kj agents from the remaining agents after skj from group Gj
for any Gj /∈ G′, and kj + 1 agents from the group Gj ∈ G′
with budget B. Thus, we prove that the minimum selection
ratio among groups by selecting these numbers of agents is
γl+1 and the maximum selection ratio is rmin + 1

nmin
.

Thus, by combining the set S̃ and S \ S̃, we have

OPT ≤ rmin +
1

nmin
+ γl+1 ≤ 2rf +

1

nmax
+

1

nmin
(5)

due to Lemma 1.
Sub-case 2: The virtual ratio γl+1 is generated from

the group Gj ∈ G′. We can similarly prove that OPT ≤
2rf +

1
nmax

+ 1
nmin

.
Therefore, we have OPT ≤ 2ALG + 1

nmin
+ 1

nmax
.

Specifically, if ALG ≥ 1
nmax

, we have OPT
ALG ≤ 3 + α which

means BPSG achieves (3 + α)-approximation ratio.

Next, we provide an asymptotic tight lower bound for all
of budget-feasible proportion-representative mechanisms.
Theorem 5. No budget-feasible proportion-representative
mechanism obtains an approximation ratio better than Ω(α).

In particular, it is worth stating that this lower bound also
applies to the multiple group setting.

4 Mechanisms for Multiple Group Settings
In this section, we consider the multiple group setting where
each agent si might belong to multiple groups, i.e., 1 ≤

Algorithm 2: Mechanism BPMG-S(B, b, S, G)
Input: B, b, S, G.
Output: P, Sw

1 P ← 0, Sw ← ∅;
2 Sort all agents in the non-decreasing order of their

bids bi, i.e., b1 ≤ b2 ≤ · · · ≤ bn;
3 // Determine the candidate agent set;
4 for 1 ≤ i ≤ n do
5 Compute r(si) according to (6);
6 F (si)←

∑
1≤j≤mdr(si) · nje;

7 if bi · F (si) ≤ B then
8 i← i+ 1;
9 else

10 break;
11 end
12 end
13 k ← i− 1;
14 // Agent selection and payment scheme;
15 X,Sw ← AgentSelect(Sk);
16 The payment for si ∈ Sw is pi = min{ B

F (sk)
, bk+1};

|G(si)| ≤ m. We distinguish two sub-cases according to
whether the contribution of the agent is counted only once or
not: single-counting case and multiple-counting case. In the
single counting case, the selection ratio in one of the groups
G(si), say Gj , would increase by 1

nj
where nj = |Gj | if si is

selected and contributes toGj ; while in the multiple counting
case, the selection ratios of all groups in G(si) would increase
by 1

nj
for any Gj ∈ G(si), once si is selected.

4.1 Single Counting Case

In this section, we introduce a Budget-feasible Proportion-
representative mechanism for the Multiple Group setting in
Single counting case, called BPMG-S.

Intuitively, we measure the supply of agents for a given
fixed payment. Given all agents who have bids lower than
this payment, we can compute the solution that maximizes
the minimum selection ratio among groups. This minimum
ratio will increase and reflect the supply as the number of
agents increases. We then try to find the payment which can
maximize such a ratio and ensure the budget feasibility, si-
multaneously.

In detail, we first sort all the agents according to their non-
decreasing order of bids b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn. Let xij =
1 indicate that agent si is matched to group Gj , otherwise,
xij = 0. Agent si can only be matched to at most one group,
i.e.,

∑
j≤m xij ≤ 1, ∀i ≤ n. Denote by S(sh) = {si|i ≤ h}

the set containing agents before agent bh+1.
Before introducing our mechanism, we first introduce an

important component, an integer programming formulation
to compute a matching result under a given agent set S(sh),
that maximizes the minimum selection ratio among groups
while ignoring the costs and budget constraint, denoted by
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Figure 1: An example of a flow network under ratio rs.

ILP (sh) as follows,

max min
1≤j≤m

∑
i≤h xij

nj

s.t.,
∑
j≤m

xij ≤ 1, ∀i ≤ h

xij ∈ {0, 1}, ∀i ≤ h,Gj ∈ G(Si)
xij = 0, ∀i ≤ h,Gj /∈ G(Si)

(6)

where these three conditions indicate that agents in S(sh) can
only be matched to at most one of the groups they belong to.
Notice that the optimal solution in (6) can be computed in
polynomial time by constructing Max-Flow networks as fol-
lows. In detail, given agent set S(sh), all possible selection
ratios for group Gj are in ∪y≤|S(sh)∩Gj |{

y
nj
}. Thus, the op-

timal selection ratio in the solution of (6) must be one of the
ratios in R = ∪y≤|S(sh)∩Gj |,j≤m{

y
nj
}. Particularly, we re-

move duplicate elements in R. We say a ratio rs ∈ R is
feasible if we can find a matching result ensuring that the se-
lection ratio in each group is at least rs and satisfying all con-
ditions in (6). To find the optimal solution, we take rs ∈ R
as an input and construct a flow network based on such a ra-
tio. As shown in Fig. 1, we use blue, red and black circles to
represent source node s/terminal node t, groups and agents,
respectively. Specifically, there exists a directed edge from
source s to each group Gj , an edge from each Gj to si if
si ∈ Gj , and from each agent si to terminal node t. Each
edge from s to Gj is assigned with a capacity drs ·nje, while
the capacity of each directed edge from Gj to sj and from
si to t is 1. If the maximum flow on this network equals∑
j≤mdrs · nje, then rs is a feasible ratio. We can find the

optimal solution in (6) by testing every possible input of rs
and validating its feasibility, i.e., the maximum one among
all feasible ratios is the desired optimal solution.

Let X(sh) denote the solution of ILP (sh), and r(sh) is
the minimum selection ratio among groups underX(sh). De-
note by F (sh) the total number of agents under ratio r(sh),
i.e.,

F (sh) =
∑

1≤j≤m

dr(sh) · nje. (7)

It is obvious that F (sh) ≤ |S(sh)|.
Candidate agent selection. Now we are ready to select
agents. We first decide on a set of candidate agents, from
which we select agents. We iteratively test each agent’s bid

Algorithm 3: Function AgentSelect( S, G, k)
Input: S, G, k.
Output: X,Sw

1 X ← 0, Sw ← ∅;
2 Assign each agent si a weight wi = 2zi where
zi ∈ N+ is an arbitrary integer such that no two
agents have the same weight, i.e., zi 6= zi′ for any
i 6= i′;

3 Compute the final allocation Xw(sk) according to (8);
4 X ← Xw(sk);
5 Add agent si(∀1 ≤ i ≤ n) into Sw if

∑
j≤m xij = 1;

starting from the first agent’s bid b1. Suppose that we are now
trying agent si and calculate the value of F (si) by equation
(7). If bi ·F (si) ≤ B, we consider the next agent si+1, other-
wise, we select agents from the previous i−1 agents S(si−1).
Assume that sk is the last agent who satisfies bk ·F (sk) ≤ B
which implies bk+1 · F (sk+1) > B. After determining the
value k, we define agent set S(sk) = {si : i ≤ k} as the
candidate agent set, where |S(sk)| ≥ F (sk) follows.
Agent selection and payment scheme. Now we select
agents from the candidate agent set S(sk). First, we assign
each agent si a weight wi = 2zi where zi ∈ N+ is an arbi-
trary integer such that no two agents have the same weight,
i.e., zi 6= zi′ for any i 6= i′. Then, we use the function
AgentSelect(S,G, k) to select F (sk) agents from S(sk).
The detail of AgentSelect(S,G, k) is shown in Algorithm 3.
We try to find a minimum weight matching between agents
and groups that can minimize the total weight of matched
agents satisfying that each group Gj is matched dr(sk) · nje
agents from set S(sk) as follows, denoted by ILPw(sk)2,

min
∑

1≤i≤k

∑
1≤j≤m

wixij

s.t.,
∑

1≤j≤m

xij ≤ 1, ∀i ≤ k

∑
1≤i≤k

xij = dr(sk) · nje, ∀j ≤ m

xij ∈ {0, 1}, ∀i ≤ k,Gj ∈ G(Si)
xij = 0, ∀i ≤ k,Gj /∈ G(Si).

(8)

Since we assign agents exponential weights, there is a unique
matching result in (8). Let Xw(sk) denote the solution of
ILPw(sk). If agent si:i≤k is matched to one of the groups,
i.e.,

∑
1≤j≤m xij = 1, then she is selected, i.e., si ∈ Sw. The

payment for each selected agent is pi = min{ B
F (sk)

, bk+1}
while the payments for unselected agents are zero3.

Next we analyze the performance of Mechanism BPMG-S.
Theorem 6. Mechanism BPMG-S guarantees individual ra-
tionality, budget feasibility and computational efficiency.

We prove the truthfulness of Mechanism BPMG-S by
showing that it satisfies Theorem 2.

2This problem can be similarly solved in polynomial time by
constructing Max-Flow Min-Cost networks.

3The payment for each selected agent is B
F (sk)

if k = n.
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Theorem 7. Mechanism BPMG-S guarantees truthfulness.

Let OPTs and ALGs denote the optimal solution and the
solution of BPMG-S, respectively. We show that BPFG-
S generally achieves an approximation ratio with respect to
the size of groups when at least one agent is selected in
each group, while there is a small gap between BPFG-S and
any other budget-feasible proportion-representative mecha-
nism when BPFG-S cannot select at least one agent from each
group.

Theorem 8. (1) Mechanism BPMG-S achieves (mα(α +
2) + 1)-approximation ratio if BPMG-S can select at least
one agent from each group (i.e., ALGs ≥ 1

nmax
) where

α = nmax

nmin
.

(2) No budget-feasible proportion-representative mecha-
nismM′ can obtain ALGM′ ≥ θ for any θ > 1

nmin
where

ALGM′ is the solution ofM′ if Mechanism BPMG-S cannot
select at least one agent from each group, i.e., ALGs = 0.

4.2 Multiple Counting Case
In this section, we consider the multiple counting case where
the selection ratio of each group Gj in G(si) can increase
by 1

nj
for Gj ∈ G(si) when si is selected. We propose a

modified version of Mechanism BPMG-S, called BPMG-M.
In general, Mechanism BPMG-M applies the methodolog-

ical framework in Mechanism BPMG-S. We first sort all
the agents according to their non-decreasing order of bids
b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn. We then use an integer pro-
gramming formulation to compute a result given an agent set
S(sh) = {si : i ≤ h}, that maximizes the minimum selec-
tion ratio among groups, denoted by ILPm(sh) as follows,

maxmin
j≤m

∑
si∈Gj

xi

nj

s.t., xi ∈ {0, 1}, ∀i ≤ h
xi = 0, ∀i > h

(9)

where the two conditions mean that we only consider agents
in S(sh). Similar to that of (6), we can solve this problem by
using the Max-Flow method. LetXm(sh) denote the solution
of ILPm(sh), and rm(sh) denote the minimum selection ra-
tios under Xm(sh). We denote Fm(sh) as the total counted
number of selected agents among groups by ratio rm(sh), i.e.,
Fm(sh) =

∑
j≤mdrm(sh) · nje.

Candidate agent selection. We also decide on a set of can-
didate agents by iteratively testing each agent’s bid starting
from the first agent’s bid b1. That is, we find the last agent sk
who ensures bk · Fm(sk) ≤ B and bk+1 · Fm(sk+1) > B.
Then, the agent set S(sk) is the candidate agent set.

Agent selection and payment scheme. Similar to the agent
selection function AgentSelect(Sk, G,B), we assign each
agent si a weight wi = 2zi where zi ∈ N+ is an arbitrary
integer such that no two agents have the same weight, i.e.,
zi 6= zi′ for any i 6= i′. We try to select agents with the mini-
mum total weight satisfying that each group Gj is selected at
least drm(sk) ·nje agents from set S(sk) as follows, denoted

by ILPmw (sk),

min
∑
i≤k

wixi

s.t.,
∑
i∈Gj

xi ≥ drm(sk) · nje, ∀j ≤ m

xi ∈ {0, 1}, ∀i ≤ k
xi = 0, ∀i > k

(10)

Let Xm
w (sk) denote the solution of ILPmw (sk). If

xi = 1, agent si is selected and her payment is pi =
min{ B

Fm(sk)
, bk+1}, otherwise, pi = 0.

Theorem 9. Mechanism BPMG-M guarantees individual
rationality, budget feasibility, computational efficiency and
truthfulness.

Let ALGm denote the solution of Mechanism BPMG-M.

Theorem 10. (1) Mechanism BPMG-M achieves (mα(α +
2) + 1)-approximation ratio if BPMG-M can obtain at least
one agent from each group (i.e., ALGm ≥ 1

nmax
) where α =

nmax

nmin
.

(2) No budget-feasible proportion-representative mecha-
nism M′′ can obtain ALGM′′ ≥ θ for any θ > 2m

nmin

where ALGM′′ is the solution ofM′′ if Mechanism BPMG-
M cannot select at least one agent from each group, i.e.,
ALGm = 0.

5 Conclusion
We consider the proportion representation budget-feasible
mechanism design problem where agents may have diverse
group attributes. We focus on designing budget-feasible
mechanisms that can select appropriate proportions of agents
from various groups satisfying individual rationality, budget
feasibility, and truthfulness under several settings. For the
single group setting, we propose Mechanism BPSG, which it-
eratively tests each virtual ratio generated by the distribution
of agents across groups and finds the maximum one as the
base selection ratio for all groups. For the multiple group set-
ting, we first consider the single counting case by proposing
Mechanism BPMG-S, which leverages Max-Flow solution to
measure the supply of agents under a fixed payment and finds
the payment which can maximize the minimum selection ra-
tio among groups. We then extend BPMG-S to the multiple
counting case.
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